论文标题

有限元网络分析:基于机器学习的物理系统模拟的计算框架

Finite Element Network Analysis: A Machine Learning based Computational Framework for the Simulation of Physical Systems

论文作者

Jokar, Mehdi, Semperlotti, Fabio

论文摘要

这项研究介绍了有限元网络分析(FENA)的概念,该概念是一个具有物理信息,基于机器学习的计算框架,用于模拟复杂物理系统。该框架利用训练有素的神经网络的极端计算速度以及双向复发性神经网络(BRNN)的独特转移知识属性提供了一个独特的功能强大且灵活的计算平台。该框架最引人注目的属性之一是它通过结合组装阶段之后不需要任何进一步训练的单独预训练的网络模型来模拟由多个互连组件制成的复杂系统的响应的能力。通过使用关键概念(例如转移知识和网络串联)来实现这一非凡的结果。尽管计算框架被说明并在静态负载下的机械系统情况下进行了数值验证,但该框架的概念结构具有广泛的适用性,并且可以扩展到计算科学最多样化的领域。该框架是根据传统有限元分析提供的解决方案来验证该框架的,结果突出了这个新的计算平台概念的出色表现。

This study introduces the concept of finite element network analysis (FENA) which is a physics-informed, machine-learning-based, computational framework for the simulation of complex physical systems. The framework leverages the extreme computational speed of trained neural networks and the unique transfer knowledge property of bidirectional recurrent neural networks (BRNN) to provide a uniquely powerful and flexible computing platform. One of the most remarkable properties of this framework consists in its ability to simulate the response of complex systems, made of multiple interconnected components, by combining individually pre-trained network models that do not require any further training following the assembly phase. This remarkable result is achieved via the use of key concepts such as transfer knowledge and network concatenation. Although the computational framework is illustrated and numerically validated for the case of a mechanical system under static loading, the conceptual structure of the framework has broad applicability and could be extended to the most diverse field of computational science. The framework is numerically validated against the solution provided by traditional finite element analysis and the results highlight the outstanding performance of this new concept of computational platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源