论文标题

自由费用的离散量子绝热过程,并与假想时间的演变进行比较

Discretized quantum adiabatic process for free fermions and comparison with the imaginary-time evolution

论文作者

Shirakawa, Tomonori, Seki, Kazuhiro, Yunoki, Seiji

论文摘要

在量子技术的最新进展中,我们研究了一个由变量波函数(即参数化量子电路)描述的一维自由费式系统的离散量子绝热过程。波函数由两组$ M $层组成,这些层是两组时期操作员,每个集合都被分解为可通勤的本地运算符。每个时间进化运算符的演变时间都被视为变分参数,以最大程度地减少能量的期望值。我们表明,通过应用最多的系统大小的四分之一的层来达到确切的基础状态。这是按照速度极限(即Lieb-Robinson绑定的限制)设置的最小数字$ M_B $,用于通过局部时间进化操作员传播量子纠缠。 $ M <m_b $的优化变量波功能的Energy $ e $和纠缠熵$ S $之类的数量独立于系统尺寸$ L $,但属于$ M $的某些通用功能。在这些安萨兹(Ansatz)中纠缠的发展进一步体现在变异波函数中单粒子轨道的逐步传播中。我们还发现,优化的变分参数显示了系统结构,该结构在量子绝热过程中提供了最佳的调度函数。我们还研究了该变异波函数的虚拟时间演变,其中由于假想时间进化算子的非军事性而没有因果关系,因此波函数的规范不再保守。我们发现,尽管该系统处于关键点,但与确切基态的收敛呈指数级快速,这表明在量子电路中实施了非单身假想时间演变是高度希望可以进一步浅层电路深度的。

Motivated by recent progress of quantum technologies, we study a discretized quantum adiabatic process for a one-dimensional free fermion system described by a variational wave function, i.e., a parametrized quantum circuit. The wave function is composed of $M$ layers of two elementary sets of time-evolution operators, each set being decomposed into commutable local operators. The evolution time of each time-evolution operator is treated as a variational parameter so as to minimize the expectation value of the energy. We show that the exact ground state is reached by applying the layers of time-evolution operators as many as a quarter of the system size. This is the minimum number $M_B$ of layers set by the limit of speed, i.e., the Lieb-Robinson bound, for propagating quantum entanglement via the local time-evolution operators. Quantities such as the energy $E$ and the entanglement entropy $S$ of the optimized variational wave function with $M < M_B$ are independent of the system size $L$ but fall into some universal functions of $M$. The development of the entanglement in these ansatz is further manifested in the progressive propagation of single-particle orbitals in the variational wave function. We also find that the optimized variational parameters show a systematic structure that provides the optimum scheduling function in the quantum adiabatic process. We also investigate the imaginary-time evolution of this variational wave function, where the causality relation is absent due to the non-unitarity of the imaginary-time evolution operators, thus the norm of the wave function being no longer conserved. We find that the convergence to the exact ground state is exponentially fast, despite that the system is at the critical point, suggesting that implementation of the non-unitary imaginary-time evolution in a quantum circuit is highly promising to further shallow the circuit depth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源