论文标题
使用跨维神经网络播放Catan
Playing Catan with Cross-dimensional Neural Network
论文作者
论文摘要
Catan是一款具有有趣属性的战略棋盘游戏,包括多人,不完美的信息,随机,复杂的状态空间结构(六边形板,每个顶点,边缘和面部都有其自己的功能,每个玩家的卡片等)以及大型动作空间(包括谈判)。因此,通过强化学习(简称RL)建立AI代理是一项挑战,而没有领域知识也不是启发式方法。在本文中,我们引入了跨维神经网络,以处理信息源和各种输出的混合物,并从经验上证明该网络显着改善了Catan的RL。我们还表明,RL代理商首次胜过最佳启发式代理Jsettler。
Catan is a strategic board game having interesting properties, including multi-player, imperfect information, stochastic, complex state space structure (hexagonal board where each vertex, edge and face has its own features, cards for each player, etc), and a large action space (including negotiation). Therefore, it is challenging to build AI agents by Reinforcement Learning (RL for short), without domain knowledge nor heuristics. In this paper, we introduce cross-dimensional neural networks to handle a mixture of information sources and a wide variety of outputs, and empirically demonstrate that the network dramatically improves RL in Catan. We also show that, for the first time, a RL agent can outperform jsettler, the best heuristic agent available.