论文标题

归一化的拉普拉斯,kirchhoff索引和跨越源自线性多元链的强棱镜的图的树木

The normalized Laplacian, degree-Kirchhoff index and spanning trees of graphs derived from the strong prism of linear polyomino chain

论文作者

He, Xiaocong

论文摘要

令$ b_n $为带有$ n $ squares的线性多元链。令$ b_n^2 $为具有$ n $ squares的线性多粒链的强棱镜获得的图形,即$ k_2 $和$ b_n $的强产物。在本文中,分别确定了kirchhoff索引的明确表达式和$ b^2_n $的跨越树的数量。此外,有趣的是发现$ b^2_n $的学位-Kirchhoff指数几乎是其Gutman索引的八分之一。

Let $B_n$ be a linear polyomino chain with $n$ squares. Let $B_n^2$ be the graph obtained by the strong prism of a linear polyomino chain with $n$ squares, i.e. the strong product of $K_2$ and $B_n$. In this paper, explicit expressions for degree-Kirchhoff index and number of spanning trees of $B^2_n$ are determined, respectively. Furthermore, it is interesting to find that the degree-Kirchhoff index of $B^2_n$ is almost one eighth of its Gutman index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源