论文标题

带有盒子边界吸引向量的空中图像中的定向对象检测

Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors

论文作者

Yi, Jingru, Wu, Pengxiang, Liu, Bo, Huang, Qiaoying, Qu, Hui, Metaxas, Dimitris

论文摘要

航空图像中的面向对象检测是一项具有挑战性的任务,因为空中图像中的对象以任意方向显示,并且通常被密集地包装。当前面向对象检测方法主要依赖于两个阶段的基于锚的检测器。但是,基于锚的探测器通常会在正锚和负锚箱之间存在严重的不平衡问题。为了解决此问题,在这项工作中,我们将基于水平关键的对象检测器扩展到定向对象检测任务。特别是,我们首先检测到对象的中心关键点,然后基于该关键,然后回归框边界感知的向量(bbavectors)以捕获方向的边界框。框边界感知向量分布在所有任意定向对象的笛卡尔坐标系的四个象限中。为了减轻在角案例中学习向量的困难,我们将面向的边界框进一步分类为水平和旋转边界框。在实验中,我们表明学习框边界感知矢量优于直接预测基线方法中采用的定向边界框的宽度,高度和角度。此外,提出的方法与最先进的方法竞争。代码可在https://github.com/yijingru/bbavectors-iented-object-detection上找到。

Oriented object detection in aerial images is a challenging task as the objects in aerial images are displayed in arbitrary directions and are usually densely packed. Current oriented object detection methods mainly rely on two-stage anchor-based detectors. However, the anchor-based detectors typically suffer from a severe imbalance issue between the positive and negative anchor boxes. To address this issue, in this work we extend the horizontal keypoint-based object detector to the oriented object detection task. In particular, we first detect the center keypoints of the objects, based on which we then regress the box boundary-aware vectors (BBAVectors) to capture the oriented bounding boxes. The box boundary-aware vectors are distributed in the four quadrants of a Cartesian coordinate system for all arbitrarily oriented objects. To relieve the difficulty of learning the vectors in the corner cases, we further classify the oriented bounding boxes into horizontal and rotational bounding boxes. In the experiment, we show that learning the box boundary-aware vectors is superior to directly predicting the width, height, and angle of an oriented bounding box, as adopted in the baseline method. Besides, the proposed method competes favorably with state-of-the-art methods. Code is available at https://github.com/yijingru/BBAVectors-Oriented-Object-Detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源