论文标题

由G-Brownian运动驱动的非lipschitz多价值随机微分方程的随机平均

Stochastic averaging for non-Lipschitz multi-valued stochastic differential equations driven by G-Brownian motion

论文作者

Han, Min, Pei, Bin

论文摘要

在本文中,我们证明了由G-Brownian运动驱动的,具有非lipschitz系数的平均原理对多价值随机微分方程(MSDE)的有效性。平均MSDE的解和原始的溶液之间的收敛定理是从P-Thements和Capicity的意义上获得的。最后,提出一个例子来说明我们的理论。

In this paper, we prove the validity of an averaging principle for multi-valued stochastic differential equations (MSDEs) driven by G-Brownian motion with non-Lipschitz coefficients. The convergence theorem between the solution of the averaged MSDEs and original one was obtained in the sense of p-th moments and also in capicity. Finally, one example is presented to illustrate our theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源