论文标题

径向截止和全息纠缠

Radial Cutoffs and Holographic Entanglement

论文作者

Grado-White, Brianna, Marolf, Donald, Weinberg, Sean J.

论文摘要

张量网络,$ t \ bar {t} $以及全息原则的更广泛的概念都激发了这样的观念,即在径向截止的存在下,某些引力全息概念应该持续存在。但是,在没有时间反射对称性的情况下,即使相关边界区域被宽大的边界区域所定义,固定在径向截止上的hubeny-rangamani-takayanagi表面也通常违反强大的亚基。因此,我们建议使用固定在Codimension 2截止表面上的受限最大蛋白处方的截止全外熵的替代定义。对于尊重无效能量条件的批量解决方案,我们表明所产生的区域满足SSA,纠缠楔形嵌套和一夫一妻制,并同时与无截止的无截止信息在ADS中产生。即使截止表面未能凸出,这些结果也会成立。

Tensor networks, $T\bar{T}$, and broader notions of a holographic principle all motivate the idea that some notion of gravitational holography should persist in the presence of a radial cutoff. But in the absence of time-reflection symmetry, the areas of Hubeny-Rangamani-Takayanagi surfaces anchored to the radial cutoff generally violate strong subadditivity, even when the associated boundary regions are spacelike separated as defined by both bulk and boundary notions of causality. We thus propose an alternate definition of cutoff-holographic entropy using a restricted maximin prescription anchored to a codimension 2 cutoff surface. For bulk solutions that respect the null energy condition, we show that the resulting areas satisfy SSA, entanglement wedge nesting, and monogamy of mutual information in parallel with cutoff free results in AdS. These results hold even when the cutoff surface fails to be convex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源