论文标题
$ k $ - 相关最佳地分开量子和经典查询复杂性
$k$-Forrelation Optimally Separates Quantum and Classical Query Complexity
论文作者
论文摘要
Aaronson和Ambainis(Sicomp` 18)表明,$ n $位上的任何部分功能都可以通过进行$ q $ Quantum查询来计算出优势$δ$,也可以通过随机的$Δ/2 $进行经典计算,而随机决策树的随机决策树制造树制造。 $ {o} _q(n^{1- \ frac {1} {2q}}}δ^{ - 2})$ queries。此外,他们猜想了$ k $ - 相关问题 - 可以用$ q = \ lceil k/2 \ rceil $量子查询来计算的部分功能 - 是表现出这种极端分离的合适候选人。 我们通过显示$ \widetildeΩ(n^{1-1/k})$的紧密下限来证明他们的猜想。通过标准放大参数,这提供了一个明确的部分函数,该功能表现出$o_ε(1)$ vs $ω(n^{1-ε})$在有界的量子量子和随机查询复杂性之间的分离,其中$ε> 0 $可以任意地变小。我们的证明还为密切相关但不明确的$ k $ - 纠正函数提供了相同的界限(focs`20)。 我们的技术依赖于经典的高斯工具,尤其是按一部分进行的高斯插值和高斯集成,实际上给出了更一般的陈述。我们表明,要证明$ k $ forterations对一个功能家族的$ k $ fortherations,这足以绑定傅立叶系数的$ \ ell_1 $ - 在$ k $ $ k $和$(k-1)k $之间的傅立叶系数的重量。我们还通过零件身份证明了新的插值和集成,这些零件身份可能在圆形高维高斯向量的背景下具有独立感兴趣。
Aaronson and Ambainis (SICOMP `18) showed that any partial function on $N$ bits that can be computed with an advantage $δ$ over a random guess by making $q$ quantum queries, can also be computed classically with an advantage $δ/2$ by a randomized decision tree making ${O}_q(N^{1-\frac{1}{2q}}δ^{-2})$ queries. Moreover, they conjectured the $k$-Forrelation problem -- a partial function that can be computed with $q = \lceil k/2 \rceil$ quantum queries -- to be a suitable candidate for exhibiting such an extremal separation. We prove their conjecture by showing a tight lower bound of $\widetildeΩ(N^{1-1/k})$ for the randomized query complexity of $k$-Forrelation, where the advantage $δ= 2^{-O(k)}$. By standard amplification arguments, this gives an explicit partial function that exhibits an $O_ε(1)$ vs $Ω(N^{1-ε})$ separation between bounded-error quantum and randomized query complexities, where $ε>0$ can be made arbitrarily small. Our proof also gives the same bound for the closely related but non-explicit $k$-Rorrelation function introduced by Tal (FOCS `20). Our techniques rely on classical Gaussian tools, in particular, Gaussian interpolation and Gaussian integration by parts, and in fact, give a more general statement. We show that to prove lower bounds for $k$-Forrelation against a family of functions, it suffices to bound the $\ell_1$-weight of the Fourier coefficients between levels $k$ and $(k-1)k$. We also prove new interpolation and integration by parts identities that might be of independent interest in the context of rounding high-dimensional Gaussian vectors.