论文标题
在不完美的CSI下,Box-RLS解码器的渐近性能具有优化的资源分配
Asymptotic Performance of Box-RLS Decoders under Imperfect CSI with Optimized Resource Allocation
论文作者
论文摘要
本文考虑了大量多输入多输出(MIMO)无线通信系统中符号检测的问题。我们认为势头势势是由正规化最小二乘(RLS)解码器的两个变体之前的。即带有框约束的无约束的RLS和RLS。对于所有方案,当使用线性最小平均误差(LMMSE)估算器估算通道时,我们专注于对MARY脉冲振幅调制(M-PAM)符号的平均平方误差(MSE)和符号误差概率(SEP)。在这种情况下,通道估计误差是高斯,它允许使用凸高斯最小 - 最大定理(CGMT)在系统尺寸和相干持续时间以相同的速度大大生长时,用于MSE和SER的渐近近似值。然后,将获得的表达式在总发射能限制下得出飞行员和数据之间的最佳功率分布。此外,我们得出了所有方案的差异近似值,然后将其用于共同优化训练符号及其相关功率的数量。提出数值结果以支持理论结果的准确性。
This paper considers the problem of symbol detection in massive multiple-input multiple-output (MIMO) wireless communication systems. We consider hard-thresholding preceeded by two variants of the regularized least squares (RLS) decoder; namely the unconstrained RLS and the RLS with box constraint. For all schemes, we focus on the evaluation of the mean squared error (MSE) and the symbol error probability (SEP) for M-ary pulse amplitude modulation (M-PAM) symbols transmitted over a massive MIMO system when the channel is estimated using linear minimum mean squared error (LMMSE) estimator. Under such circumstances, the channel estimation error is Gaussian which allows for the use of the convex Gaussian min-max theorem (CGMT) to derive asymptotic approximations for the MSE and SER when the system dimensions and the coherence duration grow large with the same pace. The obtained expressions are then leveraged to derive the optimal power distribution between pilot and data under a total transmit energy constraint. In addition, we derive an asymptotic approximation of the goodput for all schemes which is then used to jointly optimize the number of training symbols and their associated power. Numerical results are presented to support the accuracy of the theoretical results.