论文标题
在爵士模型中的社会疏远的不连续过渡
Discontinuous transitions of social distancing in SIR model
论文作者
论文摘要
为了描述大流行过程中社会疏远的动态,我们遵循以前的努力,将基本流行病学模型(例如先生 - 易感性,感染和恢复)与游戏和经济理论工具相结合。我们提出了SIR模型的扩展,该模型预测了社会距离方面的一系列不连续的过渡。每个过渡都类似于二阶(金茨堡 - 陆不稳定性)的相变,因此可能是一般现象。 COVID-19的第一波浪潮导致了全球社会疏远:停止大流行的严重锁定之后是一系列锁定升降机。奥地利,以色列和德国第一波的数据分析证实了该模型的声音。此外,这项工作提出了分析大流行波的分析工具,该工具可以扩展以计算网络渗透过渡中巨型组件的衍生物,并且在危机形成理论的背景下也可能引起人们的关注。
To describe the dynamics of social distancing during pandemics, we follow previous efforts to combine basic epidemiology models (e.g. SIR - Susceptible, Infected, and Recovered) with game and economy theory tools. We present an extension of the SIR model that predicts a series of discontinuous transitions in social distancing. Each transition resembles a phase transition of the second-order (Ginzburg-Landau instability) and, therefore, potentially a general phenomenon. The first wave of COVID-19 led to social distancing around the globe: severe lockdowns to stop the pandemic were followed by a series of lockdown lifts. Data analysis of the first wave in Austria, Israel, and Germany corroborates the soundness of the model. Furthermore, this work presents analytical tools to analyze pandemic waves, which may be extended to calculate derivatives of giant components in network percolation transitions and may also be of interest in the context of crisis formation theories.