论文标题

一种从胸部X射线图像中去除异物的新方法

A novel approach to remove foreign objects from chest X-ray images

论文作者

Le, Hieu X., Nguyen, Phuong D., Nguyen, Thang H., Le, Khanh N. Q., Nguyen, Thanh T.

论文摘要

我们最初提出了一种深入学习方法,用于使用Chexphoto数据集捕获的智能手机摄像机捕获的胸部X光片。在各种设置下捕获了可以显着影响计算机辅助诊断预测质量的异物。在本文中,我们使用多方法来应对胸部X光片的去除和介入。首先,对对象检测模型进行了训练,以将异物与给定图像分开。随后,使用分割模型提取每个对象的二进制掩码。然后将每对二进制掩码和提取的对象用于介入目的。最后,现在绘制的区域合并回原始图像,从而导致干净且非外部对象存在的输出。总而言之,我们实现了最先进的准确性。实验结果显示了该方法在胸部X射线图像检测中的可能应用的新方法。

We initially proposed a deep learning approach for foreign objects inpainting in smartphone-camera captured chest radiographs utilizing the cheXphoto dataset. Foreign objects which can significantly affect the quality of a computer-aided diagnostic prediction are captured under various settings. In this paper, we used multi-method to tackle both removal and inpainting chest radiographs. Firstly, an object detection model is trained to separate the foreign objects from the given image. Subsequently, the binary mask of each object is extracted utilizing a segmentation model. Each pair of the binary mask and the extracted object are then used for inpainting purposes. Finally, the in-painted regions are now merged back to the original image, resulting in a clean and non-foreign-object-existing output. To conclude, we achieved state-of-the-art accuracy. The experimental results showed a new approach to the possible applications of this method for chest X-ray images detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源