论文标题

对抗过滤器,用于安全调制分类

Adversarial Filters for Secure Modulation Classification

论文作者

Berian, Alex, Staab, Kory, Teku, Noel, Ditzler, Gregory, Bose, Tamal, Tandon, Ravi

论文摘要

调制分类(MC)是指对无线信号的调制类进行分类的问题。在无线通信管道中,MC是在接收信号上执行的第一个操作,对于可靠的解码至关重要。本文考虑了安全调制分类的问题,其中发射器(爱丽丝)希望在合法接收器(BOB)处最大化MC精度,同时最大程度地减少Eavesdropper(EVE)的MC精度。 这项工作的贡献是为安全MC设计新颖的对抗学习技术。特别是,我们为安全MC提供了基于对抗性滤波的算法,在该算法中,爱丽丝使用精心设计的对抗过滤器来掩盖发射的信号,从而最大程度地提高了BOB的MC精度,同时最大程度地降低了EVE的MC精度。我们提出了两种基于滤波的算法,即梯度上升过滤器(GAF)和一种快速梯度滤波器方法(FGFM),复杂性水平不同。 我们提出的基于对抗性过滤的方法极大地超过了添加剂的对抗扰动(用于传统的ML社区和Secure MC上的其他先前作品),并且还具有其他一些理想的属性。特别是,GAF和FGFM算法是a)计算有效的(允许在鲍勃快速解码),b)功率效率(不需要在爱丽丝(Alice)的发射功率过多);和c)SNR有效(即,在BOB处的低SNR值以良好的效果)。

Modulation Classification (MC) refers to the problem of classifying the modulation class of a wireless signal. In the wireless communications pipeline, MC is the first operation performed on the received signal and is critical for reliable decoding. This paper considers the problem of secure modulation classification, where a transmitter (Alice) wants to maximize MC accuracy at a legitimate receiver (Bob) while minimizing MC accuracy at an eavesdropper (Eve). The contribution of this work is to design novel adversarial learning techniques for secure MC. In particular, we present adversarial filtering based algorithms for secure MC, in which Alice uses a carefully designed adversarial filter to mask the transmitted signal, that can maximize MC accuracy at Bob while minimizing MC accuracy at Eve. We present two filtering based algorithms, namely gradient ascent filter (GAF), and a fast gradient filter method (FGFM), with varying levels of complexity. Our proposed adversarial filtering based approaches significantly outperform additive adversarial perturbations (used in the traditional ML community and other prior works on secure MC) and also have several other desirable properties. In particular, GAF and FGFM algorithms are a) computational efficient (allow fast decoding at Bob), b) power-efficient (do not require excessive transmit power at Alice); and c) SNR efficient (i.e., perform well even at low SNR values at Bob).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源