论文标题

使用广义线性链技巧来寻找繁殖模型的繁殖数和任意有限维度的捕食者捕集数模型

Finding Reproduction Numbers for Epidemic Models & Predator-Prey Models of Arbitrary Finite Dimension Using The Generalized Linear Chain Trick

论文作者

Hurtado, Paul J., Richards, Cameron

论文摘要

繁殖数字,例如基本的繁殖数$ \ Mathcal {r} _0 $,在分析和应用动态模型(包括传染模型和生态种群模型)中起着重要作用。得出这些数量的一个困难是必须按模型计算它们,因为获得适用于相关模型家族的一般繁殖数表达式通常是不切实际的,尤其是如果这些表达式不同。例如,通常是使用线性链技巧(LCT)得出的SIR型传染病模型的情况。在这里,我们展示了如何使用下一代运算符方法与广义线性链技巧(GLCT)一起找到此类模型家族(其状态变量数量不同)的一般繁殖数表达式。我们进一步展示了GLCT如何通过利用理论和连续时间马尔可夫链(CTMC)及其吸收时间分布(即相型概率分布)来从这些结果中获取见解。为此,我们首先回顾了均值场模型假设,CTMC和相型分布之间的GLCT和其他连接。然后,我们应用此技术来找到两组模型的繁殖数:一个任意有限维度的广义SEIRS模型,以及一个有限维度捕食者 - 捕获式prey(Rosenzweig-Macarthur类型)的广义家族。这些结果突出了GLCT对平均场ode模型的推导和分析的实用性,尤其是与CTMC的理论及其相关的相型分布一起使用时。

Reproduction numbers, like the basic reproduction number $\mathcal{R}_0$, play an important role in the analysis and application of dynamic models, including contagion models and ecological population models. One difficulty in deriving these quantities is that they must be computed on a model-by-model basis, since it is typically impractical to obtain general reproduction number expressions applicable to a family of related models, especially if these are of different dimensions. For example, this is typically the case for SIR-type infectious disease models derived using the linear chain trick (LCT). Here we show how to find general reproduction number expressions for such models families (which vary in their number of state variables) using the next generation operator approach in conjunction with the generalized linear chain trick (GLCT). We further show how the GLCT enables modelers to draw insights from these results by leveraging theory and intuition from continuous time Markov chains (CTMCs) and their absorption time distributions (i.e., phase-type probability distributions). To do this, we first review the GLCT and other connections between mean-field ODE model assumptions, CTMCs, and phase-type distributions. We then apply this technique to find reproduction numbers for two sets of models: a family of generalized SEIRS models of arbitrary finite dimension, and a generalized family of finite dimensional predator-prey (Rosenzweig-MacArthur type) models. These results highlight the utility of the GLCT for the derivation and analysis of mean field ODE models, especially when used in conjunction with theory from CTMCs and their associated phase-type distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源