论文标题

在环形分解式式票形图中,哈密顿循环图

Hamiltonian cycles in annular decomposable Barnette graphs

论文作者

Bej, Saptarshi

论文摘要

Barnette的猜想是图理论中未解决的问题。该问题指出,每3个常规(立方),三个连接,平面,两部分(Barnette)图是汉密尔顿的。部分结果是对顶点数量的限制,面部分区的几个属性和双向图的双图,而某些研究仅着眼于Barnette图的结构表征。指出蜘蛛网图是环形可分解的巴内特(ADB图)图的一个子类,并且是哈密顿量,我们研究了ADB图及其环形连接子类(ADB-AC图)。我们表明,可以使用递归边缘操作从最小的Barnette图生成ADB-AC图。我们得出了几种条件,可确保在ADB-AC图中存在Hamiltonian周期,而不会对面部分区的顶点,面部大小或任何其他约束施加限制。我们表明,ADB-AC图中可以有两种类型的Annuli,Ring Annuli和Block Annuli。我们的主要结果是,具有无环的Andull序列的ADB-AC图是哈密顿量。

Barnette's conjecture is an unsolved problem in graph theory. The problem states that every 3-regular (cubic), 3-connected, planar, bipartite (Barnette) graph is Hamiltonian. Partial results have been derived with restrictions on number of vertices, several properties of face-partitions and dual graphs of Barnette graphs while some studies focus just on structural characterizations of Barnette graphs. Noting that Spider web graphs are a subclass of Annular Decomposable Barnette (ADB graphs) graphs and are Hamiltonian, we study ADB graphs and their annular-connected subclass (ADB-AC graphs). We show that ADB-AC graphs can be generated from the smallest Barnette graph using recursive edge operations. We derive several conditions assuring the existence of Hamiltonian cycles in ADB-AC graphs without imposing restrictions on number of vertices, face size or any other constraints on the face partitions. We show that there can be two types of annuli in ADB-AC graphs, ring annuli and block annuli. Our main result is, ADB-AC graphs having non singular sequences of ring annuli are Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源