论文标题
Bihom-Frobenius代数的双重构造
Double constructions of biHom-Frobenius algebras
论文作者
论文摘要
This paper addresses a Hom-associative algebra built as a direct sum of a given Hom-associative algebra $(\mathcal{A}, \cdot, α)$ and its dual $(\mathcal{A}^{\ast}, \circ, α^{\ast}),$ endowed with a non-degenerate symmetric bilinear form $ \ MATHCAL {b},$,其中$ \ cdot $和$ \ circ $是$ \ Mathcal {a} $和$ \ MathCal {a}^{\ ast}的产品,以及$α$ a}^{\ ast},以及$α$和$α$和$α^{\ ast} $ a^{\ ast} $ sane for The Alge alge alge homemormormormormormormormormormormorprism。这种双重结构也称为Hom-Frobenius代数,是用无穷小的hom-bialgebra来解释的。使用相同的程序来表征BIHOM缔合代数的双重结构,也称为Bihom-Frobenius代数。最后,进行了双重构造的HOM树突状代数,也称为Connes Cocycle或Symblectic Hom-sassociative代数的双重结构。此外,引入和讨论了Bihom树突状代数的概念。还构建了它们的双模型和匹配对,并给出了相关的相关属性。
This paper addresses a Hom-associative algebra built as a direct sum of a given Hom-associative algebra $(\mathcal{A}, \cdot, α)$ and its dual $(\mathcal{A}^{\ast}, \circ, α^{\ast}),$ endowed with a non-degenerate symmetric bilinear form $\mathcal{B},$ where $\cdot$ and $\circ$ are the products defined on $\mathcal{A}$ and $\mathcal{A}^{\ast},$ respectively, and $ α$ and $α^{\ast}$ stand for the corresponding algebra homomorphisms. Such a double construction, also called Hom-Frobenius algebra, is interpreted in terms of an infinitesimal Hom-bialgebra. The same procedure is applied to characterize the double construction of biHom-associative algebras, also called biHom-Frobenius algebra. Finally, a double construction of Hom-dendriform algebras, also called double construction of Connes cocycle or symplectic Hom-associative algebra, is performed. Besides, the concept of biHom-dendriform algebras is introduced and discussed. Their bimodules and matched pairs are also constructed, and related relevant properties are given.