论文标题

GL(M | N)和广义Schur Superalgebras的Donkin-Koppinen过滤

Donkin-Koppinen filtration for GL(m|n) and generalized Schur superalgebras

论文作者

Marko, Frantisek, Zubkov, Alexandr N.

论文摘要

该论文包含的结果表征了一般线性超级组$ g = gl(m | n)$的坐标超级级$ k [g] $c_γ=o_γ(k [g])$的结果。在这里,超模块$c_γ$是$ k [g] $的最大的子模块,其组成因子是不可约的超级模型,最高权重$λ$,其中$λ$属于有限生成的理想$γ$的poset $ x(t)^+g $ g $的poset $ x(t)^+$ g $。 $ g $的分解作为usuperschemes $ u^ - \ times g_ {ev} \ times u^+$诱导superalgebra isomorphism $ ϕ^*:k [u^ - ] \ otimes k [g_ {ev}我们表明$c_γ= ϕ^*(k [u^ - ] \ otimesm_γ\ otimes k [u^+])$,其中$m_γ=o_γ(k [g_ {ev}])$。使用通用的二键剂给出的模块$M_γ$的基础,我们描述了$C_γ$的基础。 由于每个$c_γ$都是$ k [g] $的子菜单,其双$c_γ^*=s_γ$是一个(pseudoCompact)Superalgebra,称为广义Schur Superalgebra。有一个自然的超级级摩尔词$π_γ:dist(g)\ tos_γ$,使得分布代数$ dist(g)$的图像在$s_γ$中密集。对于理想的$ x(t)^+_ {l} $,固定长度的所有权重,描述了$π_{x(t)^+_ {l}} $的内核的生成器。

The paper contains results that characterize the Donkin-Koppinen filtration of the coordinate superalgebra $K[G]$ of the general linear supergroup $G=GL(m|n)$ by its subsupermodules $C_Γ=O_Γ(K[G])$. Here, the supermodule $C_Γ$ is the largest subsupermodule of $K[G]$ whose composition factors are irreducible supermodules of highest weight $λ$, where $λ$ belongs to a finitely-generated ideal $Γ$ of the poset $X(T)^+$ of dominant weights of $G$. A decomposition of $G$ as a product of subsuperschemes $U^-\times G_{ev}\times U^+$ induces a superalgebra isomorphism $ϕ^* : K[U^-]\otimes K[G_{ev}]\otimes K[U^+]\simeq K[G]$. We show that $C_Γ=ϕ^*(K[U^-]\otimes M_Γ\otimes K[U^+])$, where $M_Γ=O_Γ(K[G_{ev}])$. Using the basis of the module $M_Γ$, given by generalized bideterminants, we describe a basis of $C_Γ$. Since each $C_Γ$ is a subsupercoalgebra of $K[G]$, its dual $C_Γ^*=S_Γ$ is a (pseudocompact) superalgebra, called the generalized Schur superalgebra. There is a natural superalgebra morphism $π_Γ:Dist(G)\to S_Γ$ such that the image of the distribution algebra $Dist(G)$ is dense in $S_Γ$. For the ideal $X(T)^+_{l}$, of all weights of fixed length $l$, the generators of the kernel of $π_{X(T)^+_{l}}$ are described.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源