论文标题

在模型中损坏的异常镜子对称性破裂Sr $ _2 $ cuo $ _2 $ cl $ _2 $

Anomalous mirror symmetry breaking in a model insulating cuprate Sr$_2$CuO$_2$Cl$_2$

论文作者

de la Torre, A., Seyler, K. L., Zhao, L., Di Matteo, S., Scheurer, M. S., Li, Y., Yu, B., Greven, M., Sachdev, S., Norman, M. R., Hsieh, D.

论文摘要

了解库酸酯超导体的复杂相图是一个杰出的挑战。最积极的研究围绕着伪制和奇怪的金属状态的性质及其与超导性的关系。相比之下,人们普遍同意,莫特绝缘状态的低能量物理是通过二维自旋$ s $ = 1/2抗fiferromagnetic(AFM)海森伯格模型很好地捕获的。然而,最近对几个父层中的大厅电导率的最新观察似乎无视这一简单模型,并暗示了与磁性磁性状态的接近,该磁性破坏了垂直于CUO $ _2 $层的所有镜面。在这里,我们使用光学第二谐波生成直接解决模型父母铜的点组对称,$ _2 $ cuo $ _2 $ cl $ _2 $。我们报告了订单参数$φ$的证据,该订单参数$φ$打破了所有垂直的镜面平面,并且与零磁场中的磁性手续状态一致。尽管$φ$显然与AFM订单参数相结合,但我们无法通过热循环通过AFM过渡温度($ t _ {\ textrm {n}} $ $ 260 K)或通过对不同的空间位置取样。这表明$φ$ onsets上方$ t _ {\ textrm {n}} $,并且可能与pseudogap构造的机制有关。

Understanding the complex phase diagram of cuprate superconductors is an outstanding challenge. The most actively studied questions surround the nature of the pseudogap and strange metal states and their relationship to superconductivity. In contrast, there is general agreement that the low energy physics of the Mott insulating parent state is well captured by a two-dimensional spin $S$ = 1/2 antiferromagnetic (AFM) Heisenberg model. However, recent observations of a large thermal Hall conductivity in several parent cuprates appear to defy this simple model and suggest proximity to a magneto-chiral state that breaks all mirror planes perpendicular to the CuO$_2$ layers. Here we use optical second harmonic generation to directly resolve the point group symmetries of the model parent cuprate Sr$_2$CuO$_2$Cl$_2$. We report evidence of an order parameter $Φ$ that breaks all perpendicular mirror planes and is consistent with a magneto-chiral state in zero magnetic field. Although $Φ$ is clearly coupled to the AFM order parameter, we are unable to realize its time-reversed partner ($-Φ$) by thermal cycling through the AFM transition temperature ($T_{\textrm{N}}$ $\approx$ 260 K) or by sampling different spatial locations. This suggests that $Φ$ onsets above $T_{\textrm{N}}$ and may be relevant to the mechanism of pseudogap formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源