论文标题

离散随机过程的量子增强分析

Quantum-enhanced analysis of discrete stochastic processes

论文作者

Blank, Carsten, Park, Daniel K., Petruccione, Francesco

论文摘要

离散的随机过程(DSP)对建模概率系统的动力学有助于,并且在科学和工程中具有广泛的应用。通常通过蒙特卡洛方法对DSP进行分析,因为实现的数量随时间步的数量成倍增加,并且通常需要进行重要的采样来减少差异。我们提出了一种用于计算DSP的特征函数的量子算法,该算法使用量子电路元素的数量完全定义了其概率分布,该量子电路元素仅随时间步长而线性地生长。量子算法考虑了所有随机轨迹,因此消除了重要性采样的需求。该算法可以用量子幅度估计算法进一步提供,以提供抽样中的二次加速。这两种策略都改善了超出经典能力的方差。量子方法可以与傅立叶近似结合使用,以估计随机变量的任何可集成函数的期望值。提出了金融和相关随机步行的应用,以说明我们结果的有用性。使用IBM量子云平台进行原则实验。

Discrete stochastic processes (DSP) are instrumental for modelling the dynamics of probabilistic systems and have a wide spectrum of applications in science and engineering. DSPs are usually analyzed via Monte Carlo methods since the number of realizations increases exponentially with the number of time steps, and importance sampling is often required to reduce the variance. We propose a quantum algorithm for calculating the characteristic function of a DSP, which completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps. The quantum algorithm takes all stochastic trajectories into account and hence eliminates the need of importance sampling. The algorithm can be further furnished with the quantum amplitude estimation algorithm to provide quadratic speed-up in sampling. Both of these strategies improve variance beyond classical capabilities. The quantum method can be combined with Fourier approximation to estimate an expectation value of any integrable function of the random variable. Applications in finance and correlated random walks are presented to exemplify the usefulness of our results. Proof-of-principle experiments are performed using the IBM quantum cloud platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源