论文标题

通过降解波动分析评估的步态复杂性对步步时间序列的不一致敏感:建模研究

Gait complexity assessed by detrended fluctuation analysis is sensitive to inconsistencies in stride time series: A modeling study

论文作者

Terrier, Philippe

论文摘要

背景:人步态在连续步伐之间表现出复杂的分形波动。步态参数的时间序列是长期相关的(统计持久性)。相比之下,当步态与外部节奏线索同步时,波动方案将修改为目标频率周围的随机振荡(统计抗稳定)。为了强调这两种波动模式,普遍的方法是降解波动分析(DFA)。 DFA结果是缩放指数,如果时间序列显示长距离相关性,则位于0.5和1之间,如果时间序列抗相关,则位于0.5。应用DFA的一个基本假设是,分析的时间序列是由于时间不变的生成过程而产生的。但是,步态时间序列可能是由具有独特波动状态的子细分集合(例如相关和反相关)组成的。方法:将几种相关和反相关的时间序列混合在一起,然后通过DFA进行分析。原始(在混合之前)时间序列是通过自回归分数集成的移动平均值(ARFIMA)建模或实际步态数据生成的。结果:结果证明了DFA对相关和抗相关系列的混合的非线性灵敏度。值得注意的是,将一小部分相关段添加到反相关的时间序列中的效果比反向更强。显着性:如果步行试验期间步态控制的变化,则结果时间序列可能是几个波动制度的零散合奏。应用DFA时,缩放指数可能会被误解。在与外部提示的零星同步的情况下,提示步行研究可能最有可能遭受此问题的风险。

Background: Human gait exhibits complex fractal fluctuations among consecutive strides. The time series of gait parameters are long-range correlated (statistical persistence). In contrast, when gait is synchronized with external rhythmic cues, the fluctuation regime is modified to stochastic oscillations around the target frequency (statistical anti-persistence). To highlight these two fluctuation modes, the prevalent methodology is the detrended fluctuation analysis (DFA). The DFA outcome is the scaling exponent, which lies between 0.5 and 1 if the time series exhibit long-range correlations, and below 0.5 if the time series is anti-correlated. A fundamental assumption for applying DFA is that the analyzed time series results from a time-invariant generating process. However, a gait time series may be constituted by an ensemble of sub-segments with distinct fluctuation regimes (e.g., correlated and anti-correlated). Methods: Several proportions of correlated and anti-correlated time series were mixed together and then analyzed through DFA. The original (before mixing) time series were generated via autoregressive fractionally integrated moving average (ARFIMA) modelling or actual gait data. Results: Results evidenced a nonlinear sensitivity of DFA to the mix of correlated and anti-correlated series. Notably, adding a small proportion of correlated segments into an anti-correlated time series had stronger effects than the reverse. Significance: In case of changes in gait control during a walking trial, the resulting time series may be a patchy ensemble of several fluctuation regimes. When applying DFA, the scaling exponent may be misinterpreted. Cued walking studies may be most at risk of suffering this issue in cases of sporadic synchronization with external cues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源