论文标题

RB-pastanet:基于规则和部分状态的几次人类对象互动检测

Rb-PaStaNet: A Few-Shot Human-Object Interaction Detection Based on Rules and Part States

论文作者

Zhang, Shenyu, Zhu, Zichen, Bao, Qingquan

论文摘要

现有的人类对象相互作用(HOI)检测方法在非种族类别上取得了巨大进展,而稀有的HOI类仍未得到充分检测。在本文中,我们打算将人类的先验知识应用于现有工作。因此,我们将人类标记的规则添加到浮渣中,并提出旨在改善稀有HOI类检测的RB-Pastanet。我们的结果表明,稀有类别有一定的改进,而非稀有类别和整体改进更为可观。

Existing Human-Object Interaction (HOI) Detection approaches have achieved great progress on nonrare classes while rare HOI classes are still not well-detected. In this paper, we intend to apply human prior knowledge into the existing work. So we add human-labeled rules to PaStaNet and propose Rb-PaStaNet aimed at improving rare HOI classes detection. Our results show a certain improvement of the rare classes, while the non-rare classes and the overall improvement is more considerable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源