论文标题

单光子图像分类

Single-Photon Image Classification

论文作者

Fischbacher, Thomas, Sbaiz, Luciano

论文摘要

基于量子计算的机器学习主要集中在量子计算硬件上,由于需要在非常低温下运行的量子门,因此在实验上具有挑战性。取而代之的是,我们在准确性VS-Qubits图上证明了较低的性能和较低的努力岛,可以通过室温光学元件在实验上访问。然而,这种高温“量子计算玩具模型”仍然很有趣,因为它允许对量子计算中的关键概念(尤其是干扰,纠缠和测量过程)中的关键概念的解释。 我们专门研究了从MNIST和时尚数据集中对示例进行分类的问题,但要受到限制,即在检测到通过相干照明过滤器的第一个光子显示该示例的第一个光子后,我们必须进行预测。尽管经典设置在跌倒$ 28 \ times 28 $图像像素之一之后被检测到光子的限于Mnist的$ 21.27 \%$ $ $ 21.27 \%$的准确性(最大似然估计)的准确性,$ 18.27 \%\%\%$ n nestry在理论上的范围时,我们表明了在理论上的准确量的最低限制,而在理论上进行了定位,以实现精确的定位,以实现精确的定位,以实现精确的定位,以实现精确的定位,以实现精确的定位,以实现精确的定位。 MNIST的$ 41.27 \%$,时尚摄影师的$ 36.14 \%$。 我们详细介绍了如何用张力流训练相应的转换,并解释了该示例如何作为量子力学测量过程的教学工具。

Quantum computing-based machine learning mainly focuses on quantum computing hardware that is experimentally challenging to realize due to requiring quantum gates that operate at very low temperature. Instead, we demonstrate the existence of a lower performance and much lower effort island on the accuracy-vs-qubits graph that may well be experimentally accessible with room temperature optics. This high temperature "quantum computing toy model" is nevertheless interesting to study as it allows rather accessible explanations of key concepts in quantum computing, in particular interference, entanglement, and the measurement process. We specifically study the problem of classifying an example from the MNIST and Fashion-MNIST datasets, subject to the constraint that we have to make a prediction after the detection of the very first photon that passed a coherently illuminated filter showing the example. Whereas a classical set-up in which a photon is detected after falling on one of the $28\times 28$ image pixels is limited to a (maximum likelihood estimation) accuracy of $21.27\%$ for MNIST, respectively $18.27\%$ for Fashion-MNIST, we show that the theoretically achievable accuracy when exploiting inference by optically transforming the quantum state of the photon is at least $41.27\%$ for MNIST, respectively $36.14\%$ for Fashion-MNIST. We show in detail how to train the corresponding transformation with TensorFlow and also explain how this example can serve as a teaching tool for the measurement process in quantum mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源