论文标题

样品协方差矩阵的线性合并

Linear pooling of sample covariance matrices

论文作者

Raninen, Elias, Tyler, David E., Ollila, Esa

论文摘要

我们考虑了估计$ k $ propuroments或类型尺寸可与数据维度相当的$ k $ propulization或类的高维协方差矩阵的问题。我们建议将每个类协方差矩阵估算为所有类样品协方差矩阵的独特线性组合。该方法显示出当样本大小受到限制时减少估计误差,而真实的类协方差矩阵共享有点相似的结构。我们开发了一种有效的方法来估计线性组合中的系数,该系数在一般假设中最小化了平方误差,即从(未指定的)椭圆形的对称分布中得出样品,具有有限的第四阶矩。为此,我们利用了空间符号协方差矩阵,随着尺寸生长到无穷大,我们(在相当普遍的条件下)是归一化协方差矩阵的渐近无偏估计量。我们还展示了如何在单个类协方差矩阵估计问题中选择多个目标矩阵的正则化参数。我们通过数值模拟研究评估了提出的方法,包括使用实际库存数据在全球最小方差投资组合优化中的应用。

We consider the problem of estimating high-dimensional covariance matrices of $K$-populations or classes in the setting where the sample sizes are comparable to the data dimension. We propose estimating each class covariance matrix as a distinct linear combination of all class sample covariance matrices. This approach is shown to reduce the estimation error when the sample sizes are limited, and the true class covariance matrices share a somewhat similar structure. We develop an effective method for estimating the coefficients in the linear combination that minimize the mean squared error under the general assumption that the samples are drawn from (unspecified) elliptically symmetric distributions possessing finite fourth-order moments. To this end, we utilize the spatial sign covariance matrix, which we show (under rather general conditions) to be an asymptotically unbiased estimator of the normalized covariance matrix as the dimension grows to infinity. We also show how the proposed method can be used in choosing the regularization parameters for multiple target matrices in a single class covariance matrix estimation problem. We assess the proposed method via numerical simulation studies including an application in global minimum variance portfolio optimization using real stock data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源