论文标题
通过动态功能选择来匹配强大的图像
Robust Image Matching By Dynamic Feature Selection
论文作者
论文摘要
估计图像之间的密集对应关系是一项长期存在的图像不足的任务。最近的作品介绍了卷积神经网络(CNN),以提取高级特征图,并通过特征匹配找到对应关系。但是,高级特征图的空间分辨率低,因此不足以提供准确且细粒度的特征,无法区分对应关系匹配的类内变化。为了解决此问题,我们通过在不同尺度上动态选择功能来生成可靠的功能。为了解决特征选择中的两个关键问题,即要选择的特征量表和哪些特征量表,我们将特征选择过程作为一个顺序的马尔可夫决策过程(MDP),并使用增强学习(RL)引入最佳选择策略。我们为图像匹配定义了RL环境,在该环境中,每个单独的动作都需要新功能,或者通过引用匹配分数来终止选择情节。深层神经网络被纳入我们的方法中,并接受了决策的培训。实验结果表明,我们的方法在三个基准上使用最先进的方法实现了可比性/出色的性能,这证明了我们特征选择策略的有效性。
Estimating dense correspondences between images is a long-standing image under-standing task. Recent works introduce convolutional neural networks (CNNs) to extract high-level feature maps and find correspondences through feature matching. However,high-level feature maps are in low spatial resolution and therefore insufficient to provide accurate and fine-grained features to distinguish intra-class variations for correspondence matching. To address this problem, we generate robust features by dynamically selecting features at different scales. To resolve two critical issues in feature selection,i.e.,how many and which scales of features to be selected, we frame the feature selection process as a sequential Markov decision-making process (MDP) and introduce an optimal selection strategy using reinforcement learning (RL). We define an RL environment for image matching in which each individual action either requires new features or terminates the selection episode by referring a matching score. Deep neural networks are incorporated into our method and trained for decision making. Experimental results show that our method achieves comparable/superior performance with state-of-the-art methods on three benchmarks, demonstrating the effectiveness of our feature selection strategy.