论文标题

MTBRN:多重目标行为关系增强网络,用于点击率预测

MTBRN: Multiplex Target-Behavior Relation Enhanced Network for Click-Through Rate Prediction

论文作者

Feng, Yufei, Lv, Fuyu, Hu, Binbin, Sun, Fei, Kuang, Kun, Liu, Yang, Liu, Qingwen, Ou, Wenwu

论文摘要

对于许多工业系统,例如显示广告和推荐系统,点击率(CTR)预测是一项至关重要的任务。最近,对用户行为序列进行建模引起了很多关注,并显示了CTR领域的巨大改进。在考虑用户行为与目标项目之间的关系时,现有作品主要基于嵌入产品的注意机制。但是,这种方法缺乏具体的语义,并且忽略了促使用户单击目标项目的根本原因。在本文中,我们提出了一个名为多重目标行为关系增强网络(MTBRN)的新框架,以利用用户行为和目标项目之间的多重关系来增强CTR预测。多重关系由有意义的语义组成,可以从不同的角度更好地理解用户的兴趣。为了探索和建模多路复用关系,我们建议将各种图表(例如,知识图和项目项目相似性图)合并,以在用户行为和目标项目之间构造多个关系路径。然后将BI-LSTM应用于路径提取器层中的每个路径。设计了一个路径融合网络和路径激活网络以自适应聚集,并最终了解CTR预测的所有路径的表示。广泛的离线和在线实验清楚地验证了我们框架的有效性。

Click-through rate (CTR) prediction is a critical task for many industrial systems, such as display advertising and recommender systems. Recently, modeling user behavior sequences attracts much attention and shows great improvements in the CTR field. Existing works mainly exploit attention mechanism based on embedding product when considering relations between user behaviors and target item. However, this methodology lacks of concrete semantics and overlooks the underlying reasons driving a user to click on a target item. In this paper, we propose a new framework named Multiplex Target-Behavior Relation enhanced Network (MTBRN) to leverage multiplex relations between user behaviors and target item to enhance CTR prediction. Multiplex relations consist of meaningful semantics, which can bring a better understanding on users' interests from different perspectives. To explore and model multiplex relations, we propose to incorporate various graphs (e.g., knowledge graph and item-item similarity graph) to construct multiple relational paths between user behaviors and target item. Then Bi-LSTM is applied to encode each path in the path extractor layer. A path fusion network and a path activation network are devised to adaptively aggregate and finally learn the representation of all paths for CTR prediction. Extensive offline and online experiments clearly verify the effectiveness of our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源