论文标题

图复杂性和链接着色

Graph Complexity and Link Colorings

论文作者

Silver, Daniel S., Williams, Susan G.

论文摘要

有限签名的图的(扭转)复杂性被定义为其Laplacian矩阵提出的Abelian组的扭转亚组的顺序。当$ g $是$ d $ - periodic(即,$ g $具有免费的$ {\ mathbb z}^d $ - 通过图形自动形态具有有限商的图形)Mahler衡量其Laplacian多项式的MAHLER量度是$ g $ $ g $的有限标准的复杂性的增长率。任何1个周期的平面图$ g $都用未打结的组件$ c $确定链接$ \ ell \ ell \ cup c $。在这种情况下,$ g $的拉普拉斯多项式与链接的亚历山大多项式有关。 Lehmer的问题是关于Monic积分多项式根源的一个开放问题,相当于关于不一定嵌入的签名的1个周期图的复杂性生长的问题。

The (torsion) complexity of a finite signed graph is defined to be the order of the torsion subgroup of the abelian group presented by its Laplacian matrix. When $G$ is $d$-periodic (i.e., $G$ has a free ${\mathbb Z}^d$-action by graph automorphisms with finite quotient) the Mahler measure of its Laplacian polynomial is the growth rate of the complexity of finite quotients of $G$. Any 1-periodic plane graph $G$ determines a link $\ell \cup C$ with unknotted component $C$. In this case the Laplacian polynomial of $G$ is related to the Alexander polynomial of the link. Lehmer's question, an open question about the roots of monic integral polynomials, is equivalent to a question about the complexity growth of signed 1-periodic graphs that are not necessarily embedded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源