论文标题
自我路径:有限注释的病理图像分类的自学
Self-Path: Self-supervision for Classification of Pathology Images with Limited Annotations
论文作者
论文摘要
尽管高分辨率病理图像非常适合“饥饿”深度学习算法,但在这些图像上获得详尽的注释是一个主要挑战。在本文中,我们提出了一种自我监督的CNN方法,以利用未标记的数据来学习病理图像中的可推广和域不变表示。我们被称为自学的方法是一种多任务学习方法,其中主要任务是组织分类和借口任务是各种自我监督任务,其标签具有输入数据固有的标签。我们介绍了新颖的领域特定自我实施任务,这些任务利用了情节图像中的上下文,多分辨率和语义特征,用于半监督学习和域的适应性。我们研究了自path对3个不同病理数据集的有效性。我们的结果表明,当少量的标记数据可用时,具有针对域的借口任务的自我路径可实现半监督学习的最新性能。此外,我们表明,当没有可用于目标域的标记数据时,自助路径可以改善组织学图像贴片的域适应性。这种方法可能会用于计算病理学中的其他应用,在计算病理学中,注释预算通常受到限制或大量未标记的图像数据。
While high-resolution pathology images lend themselves well to `data hungry' deep learning algorithms, obtaining exhaustive annotations on these images is a major challenge. In this paper, we propose a self-supervised CNN approach to leverage unlabeled data for learning generalizable and domain invariant representations in pathology images. The proposed approach, which we term as Self-Path, is a multi-task learning approach where the main task is tissue classification and pretext tasks are a variety of self-supervised tasks with labels inherent to the input data. We introduce novel domain specific self-supervision tasks that leverage contextual, multi-resolution and semantic features in pathology images for semi-supervised learning and domain adaptation. We investigate the effectiveness of Self-Path on 3 different pathology datasets. Our results show that Self-Path with the domain-specific pretext tasks achieves state-of-the-art performance for semi-supervised learning when small amounts of labeled data are available. Further, we show that Self-Path improves domain adaptation for classification of histology image patches when there is no labeled data available for the target domain. This approach can potentially be employed for other applications in computational pathology, where annotation budget is often limited or large amount of unlabeled image data is available.