论文标题

提炼自动驾驶网络的网络意图

Refining Network Intents for Self-Driving Networks

论文作者

Jacobs, Arthur Selle, Pfitscher, Ricardo José, Ferreira, Ronaldo Alves, Granville, Lisandro Zambenedetti

论文摘要

人工智能(AI)的最新进展为采用自动驾驶网络提供了机会。但是,网络运营商或家庭网络用户仍然没有正确的工具来利用AI中这些新进步,因为他们必须依靠低级语言来指定网络策略。基于意图的网络(IBN)允许操作员指定高级策略,这些策略决定网络应如何行事,而不必担心如何将其转化为网络设备中的配置命令。但是,现有的IBN研究建议未能利用网络运营商的知识和反馈来验证或改善意图的翻译。在本文中,我们介绍了一个新颖的意图过程,该过程使用机器学习和从操作员的反馈将操作员的话语转化为网络配置。我们的改进过程使用序列到序列学习模型,从自然语言中提取意图,以及从操作员的反馈来提高学习的意图。我们过程的关键见解是一种中间表示,类似于自然语言,适合从操作员那里收集反馈,但结构足以促进精确的翻译。我们的原型使用自然语言与网络运营商进行交互,并在转化为SDN规则之前将操作员输入转换为中间表示。我们的实验结果表明,对于具有5000个条目的数据集,我们的过程实现了相关系数平方(即R平方)为0.99,并且操作员反馈显着提高了我们的模型的准确性。

Recent advances in artificial intelligence (AI) offer an opportunity for the adoption of self-driving networks. However, network operators or home-network users still do not have the right tools to exploit these new advancements in AI, since they have to rely on low-level languages to specify network policies. Intent-based networking (IBN) allows operators to specify high-level policies that dictate how the network should behave without worrying how they are translated into configuration commands in the network devices. However, the existing research proposals for IBN fail to exploit the knowledge and feedback from the network operator to validate or improve the translation of intents. In this paper, we introduce a novel intent-refinement process that uses machine learning and feedback from the operator to translate the operator's utterances into network configurations. Our refinement process uses a sequence-to-sequence learning model to extract intents from natural language and the feedback from the operator to improve learning. The key insight of our process is an intermediate representation that resembles natural language that is suitable to collect feedback from the operator but is structured enough to facilitate precise translations. Our prototype interacts with a network operator using natural language and translates the operator input to the intermediate representation before translating to SDN rules. Our experimental results show that our process achieves a correlation coefficient squared (i.e., R-squared) of 0.99 for a dataset with 5000 entries and the operator feedback significantly improves the accuracy of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源