论文标题
加权Sobolev空间中Benjamin-Ono方程的非线性平滑和无条件的唯一性
Nonlinear smoothing and unconditional uniqueness for the Benjamin-Ono equation in weighted Sobolev spaces
论文作者
论文摘要
我们考虑了实际线上的Benjamin-Ono方程,以在加权Sobolev空间中的初始数据。在应用量规变换后,流动被证明是Lipschitz的连续,并具有非线性平滑效果。结果,证明了本杰明·索方程的无条件唯一性。
We consider the Benjamin-Ono equation on the real line for initial data in weighted Sobolev spaces. After the application of the gauge transform, the flow is shown to be Lipschitz continuous and to present a nonlinear smoothing effect. As a consequence, unconditional uniqueness for the Benjamin-Ono equation is proved.