论文标题

大多数由干卵石积聚形成的超级矿石比5个地球质量较小

Most super-Earths formed by dry pebble accretion are less massive than 5 Earth masses

论文作者

Venturini, Julia, Guilera, Octavio M., Ronco, M. Paula, Mordasini, Christoph

论文摘要

我们通过自搭配粉尘生长模型的干卵石积聚研究岩石行星的形成。特别是,我们旨在计算一个岩石行星的最大核心质量,该岩石行星可以维持薄薄的HE气氛,以说明开普勒尺寸分布的第二个峰值。我们通过冰线内的卵石积聚来模拟行星生长。卵石通量是通过求解代表性灰尘大小的对流扩散方程来从灰尘生长中自兼而有的。包括粉尘凝血,漂移,碎片化和升华在水上图标上。圆盘演化是用$α$ discs计算的,并使用中央恒星的光蒸发计算。行星通过硅酸盐卵石积聚和气体积聚从月球质量的胚胎生长。我们分析了不同初始椎间盘质量,$α$粘度,圆盘金属性和胚胎位置的效果。最后,我们由于蒸发而计算大气质量损失。我们发现,在冰线内,碎裂屏障决定了卵石的大小,这导致不同的碟片粘度的行星生长模式。在图标中,卵石隔离质量通常会在光盘演化的头百万年内衰减到低于5 m $ _ {\ oplus} $的值,从而将核心质量限制为该值。在计算了大气质量损失之后,我们发现核心低于$ \ sim $ 4 m $ _ {\ oplus} $的行星完全剥离了大气,还有几个4-5 m $ _ {\ oplus} $ cores保留了薄的气氛,使它们处于kepler尺寸分布的差距/第二个峰。总体而言,我们发现仅在低粘度光盘($α\ Lessim 10^{ - 4} $)中形成岩石行星。当$α\ geq 10^{ - 3} $时,岩石对象不会超过火星质量。干卵石积聚的最典型结果是地球行星,质量从火星到$ \ sim $ 4 m $ _ {\ oplus} $。

We study the formation of rocky planets by dry pebble accretion from self-consistent dust-growth models. In particular, we aim at computing the maximum core mass of a rocky planet that can sustain a thin H-He atmosphere to account for the second peak of the Kepler's size distribution. We simulate planetary growth by pebble accretion inside the ice line. The pebble flux is computed self-consistently from dust growth by solving the advection-diffusion equation for a representative dust size. Dust coagulation, drift, fragmentation and sublimation at the water iceline are included. The disc evolution is computed for $α$-discs with photoevaporation from the central star. The planets grow from a moon-mass embryo by silicate pebble accretion and gas accretion. We analyse the effect of a different initial disc mass, $α$-viscosity, disc metallicity and embryo location. Finally, we compute atmospheric mass-loss due to evaporation. We find that inside the ice line, the fragmentation barrier determines the size of pebbles, which leads to different planetary growth patterns for different disc viscosities. Within the iceline the pebble isolation mass typically decays to values below 5 M$_{\oplus}$ within the first million years of disc evolution, limiting the core masses to that value. After computing atmospheric-mass loss, we find that planets with cores below $\sim$4 M$_{\oplus}$ get their atmospheres completely stripped, and a few 4-5 M$_{\oplus}$ cores retain a thin atmosphere that places them in the gap/second peak of the Kepler size distribution. Overall, we find that rocky planets form only in low-viscosity discs ($α\lesssim 10^{-4}$). When $α\geq 10^{-3}$, rocky objects do not grow beyond Mars-mass. The most typical outcome of dry pebble accretion is terrestrial planets with masses spanning from Mars to $\sim$4 M$_{\oplus}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源