论文标题
深度学习模型的压缩文本:调查
Compression of Deep Learning Models for Text: A Survey
论文作者
论文摘要
In recent years, the fields of natural language processing (NLP) and information retrieval (IR) have made tremendous progress thanksto deep learning models like Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTMs)networks, and Transformer [120] based models like Bidirectional Encoder Representations from Transformers (BERT) [24], GenerativePre-training Transformer (GPT-2)[94],多任务深神经网络(MT-DNN)[73],超长网络(XLNET)[134],文本到文本传输变压器(T5)[95],T-NLG [98]和GSHARD [63]。但是这些型号的大小很大。另一方面,现实世界的应用需要较小的模型大小,响应时间较低和计算功率瓦数较低。 In this survey, wediscuss six different types of methods (Pruning, Quantization, Knowledge Distillation, Parameter Sharing, Tensor Decomposition, andSub-quadratic Transformer based methods) for compression of such models to enable their deployment in real industry NLP projects.Given the critical need of building applications with efficient and small models, and the large amount of recently published work inthis area, we believe that this survey organizes the plethora of work done通过过去几年的“ NLP”社区的“深度学习”,并将其作为一个连贯的故事。
In recent years, the fields of natural language processing (NLP) and information retrieval (IR) have made tremendous progress thanksto deep learning models like Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTMs)networks, and Transformer [120] based models like Bidirectional Encoder Representations from Transformers (BERT) [24], GenerativePre-training Transformer (GPT-2) [94], Multi-task Deep Neural Network (MT-DNN) [73], Extra-Long Network (XLNet) [134], Text-to-text transfer transformer (T5) [95], T-NLG [98] and GShard [63]. But these models are humongous in size. On the other hand,real world applications demand small model size, low response times and low computational power wattage. In this survey, wediscuss six different types of methods (Pruning, Quantization, Knowledge Distillation, Parameter Sharing, Tensor Decomposition, andSub-quadratic Transformer based methods) for compression of such models to enable their deployment in real industry NLP projects.Given the critical need of building applications with efficient and small models, and the large amount of recently published work inthis area, we believe that this survey organizes the plethora of work done by the 'deep learning for NLP' community in the past fewyears and presents it as a coherent story.