论文标题

通过融合深度学习语义和轮廓分段,对金属构建的像素级腐蚀检测

Pixel-level Corrosion Detection on Metal Constructions by Fusion of Deep Learning Semantic and Contour Segmentation

论文作者

Katsamenis, Iason, Protopapadakis, Eftychios, Doulamis, Anastasios, Doulamis, Nikolaos, Voulodimos, Athanasios

论文摘要

金属结构上的腐蚀检测是土木工程的主要挑战,可快速,安全和有效检查。现有的图像分析方法倾向于将边界框放置在缺陷的区域周围,这既是结构分析和预制前都不足,这是一种创新的构造概念,可降低维护成本,时间并提高安全性。在本文中,我们将三种面向语义分割的深度学习模型(FCN,U-NET和面膜R-CNN)应用于腐蚀检测,它们在准确性和时间方面的性能更好,并且需要与其他深层模型相比,需要较少的带注释的样本。 CNN。但是,得出的最终图像仍然不足以进行结构分析和预制。因此,我们采用了一种新型的数据投影方案,该方案融合了颜色分割的结果,从而产生了一个区域的准确但过度分段的轮廓,并带有深掩模的处理区域,从而产生了高信心腐蚀的像素。

Corrosion detection on metal constructions is a major challenge in civil engineering for quick, safe and effective inspection. Existing image analysis approaches tend to place bounding boxes around the defected region which is not adequate both for structural analysis and pre-fabrication, an innovative construction concept which reduces maintenance cost, time and improves safety. In this paper, we apply three semantic segmentation-oriented deep learning models (FCN, U-Net and Mask R-CNN) for corrosion detection, which perform better in terms of accuracy and time and require a smaller number of annotated samples compared to other deep models, e.g. CNN. However, the final images derived are still not sufficiently accurate for structural analysis and pre-fabrication. Thus, we adopt a novel data projection scheme that fuses the results of color segmentation, yielding accurate but over-segmented contours of a region, with a processed area of the deep masks, resulting in high-confidence corroded pixels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源