论文标题

意大利的束缚和挖掘数量

The Italian bondage and reinforcement numbers of digraphs

论文作者

Kim, Kijung

论文摘要

\ textIt {textit {意大利主导函数}在带有顶点套装$ v(d)$的digraph $ d $上定义为函数$ f:v(d)\ rightarrow \ {0,1,2 \} $,使每个顶点$ v \ in v(d $ f(v)n $ f(v)至少$ f $ n $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ nneigh nneigh $ w $ with $ f(w)= 2 $。意大利主导函数$ f $的\ textit {werge}是$ω(f)= f(v(d))= \ sum_ {u \ in V(d)} f(u)$。 Digraph $ d $的\ textit {意大利统治编号},用$γ_i(d)$表示,是$ d $上所有意大利主导函数的权重。 Digraph $ d $的\ textit {意大利债券编号},用$ b_i(d)$表示,是$ a(d)$的最小弧数,其在$ d $中删除的ARC $ a(d)$ d $ digraph $ d $ d'$ d'$ d'$ d'$ d'$,$γ_i(d')>γ_i(d)$γ_i(d)$。 Digraph $ d $的\ textit {italian加固号},用$ r_i(d)$表示,是$ d $添加的额外弧的最小数量,在$γ_i(d')<γ_i(d)$(d)$中添加了$ d $。在本文中,我们启动了意大利束缚和加强数字的研究,并为$ b_i(d)$和$ r_i(d)$提出了一些界限。我们还确定了某些类别的束缚的意大利束缚和加强数量。

An \textit{Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function $f : V(D) \rightarrow \{0, 1, 2\}$ such that every vertex $v \in V(D)$ with $f(v) = 0$ has at least two in-neighbors assigned $1$ under $f$ or one in-neighbor $w$ with $f(w) = 2$. The \textit{weight} of an Italian dominating function $f$ is the value $ω(f) = f(V(D)) = \sum_{u \in V(D)} f(u)$. The \textit{Italian domination number} of a digraph $D$, denoted by $γ_I(D)$, is the minimum taken over the weights of all Italian dominating functions on $D$. The \textit{Italian bondage number} of a digraph $D$, denoted by $b_I(D)$, is the minimum number of arcs of $A(D)$ whose removal in $D$ results in a digraph $D'$ with $γ_I(D') > γ_I(D)$. The \textit{Italian reinforcement number} of a digraph $D$, denoted by $r_I(D)$, is the minimum number of extra arcs whose addition to $D$ results in a digraph $D'$ with $γ_I(D') < γ_I(D)$. In this paper, we initiate the study of Italian bondage and reinforcement numbers in digraphs and present some bounds for $b_I(D)$ and $r_I(D)$. We also determine the Italian bondage and reinforcement numbers of some classes of digraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源