论文标题

预测可调的旋转轨道间隙材料用于暗物质检测

Prediction of Tunable Spin-Orbit Gapped Materials for Dark Matter Detection

论文作者

Inzani, Katherine, Faghaninia, Alireza, Griffin, Sinéad M.

论文摘要

低质量暗物质直接检测的新想法表明,狭窄的带隙材料(例如狄拉克半导体)对吸收MEV暗物质或KEV暗物质的散射很敏感。在这里,我们提出了自旋轨道半导体 - 由于旋转轨道耦合而产生带隙的材料 - 由于低质量暗物质的目标是由于其〜10 MEV带隙。我们提出了三个材料家族,这些家族被预测为使用密度功能理论(DFT),评估其电子和拓扑特征,并评估它们作为低质量暗物质目标的使用。特别是,我们发现锡型化合物的化合物特别适合具有可调范围的MEV尺度带隙,其各向异性费米速度允许方向检测。最后,我们解决了DFT方法中必须考虑的陷阱,这些陷阱必须从头开始预测狭窄的材料,包括接近拓扑关键点的材料。

New ideas for low-mass dark matter direct detection suggest that narrow band gap materials, such as Dirac semiconductors, are sensitive to the absorption of meV dark matter or the scattering of keV dark matter. Here we propose spin-orbit semiconductors - materials whose band gap arises due to spin-orbit coupling - as low-mass dark matter targets owing to their ~10 meV band gaps. We present three material families that are predicted to be spin-orbit semiconductors using Density Functional Theory (DFT), assess their electronic and topological features, and evaluate their use as low-mass dark matter targets. In particular, we find that that the tin pnictide compounds are especially suitable having a tunable range of meV-scale band gaps with anisotropic Fermi velocities allowing directional detection. Finally, we address the pitfalls in the DFT methods that must be considered in the ab initio prediction of narrow-gapped materials, including those close to the topological critical point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源