论文标题
扭曲的双层石墨烯中电荷中立性的列分绝缘子
Nematic insulator at charge neutrality in twisted bilayer graphene
论文作者
论文摘要
我们使用广义的bistritzer-Macdonald Continuum模型研究了扭曲的双层石墨烯近电荷中性,这说明了波纹效应。费米的速度消失了特定的扭曲角度,可以正确地再现著名的魔法角度的物理。使用组表示理论,我们确定与模型对称性兼容的所有接触相互作用势。这使我们能够识别两类的四分之一相互作用,从而导致差距的打开或列表顺序。然后,我们实施重新归一化组分析,以研究这些相互作用之间的竞争,以接近第一个魔术值。这项组合的群体理论 - 符号化研究表明,与第一个魔术角的接近性有利于发生层偏振,间隙状态的发生,并具有空间调节层间相关性,我们称之为列明绝缘子。
We investigate twisted bilayer graphene near charge neutrality using a generalized Bistritzer-MacDonald continuum model, accounting for corrugation effects. The Fermi velocity vanishes for particular twist angles properly reproducing the physics of the celebrated magic angles. Using group representation theory, we identify all contact interaction potentials compatible with the symmetries of the model. This enables us to identify two classes of quartic interactions leading to either the opening of a gap or to nematic ordering. We then implement a renormalization group analysis to study the competition between these interactions for a twist angle approaching the first magic value. This combined group theory-renormalization study reveals that the proximity to the first magic angle favors the occurrence of a layer-polarized, gapped state with a spatial modulation of interlayer correlations, which we call nematic insulator.