论文标题
用灰色代码改进哈密顿的编码
Improving Hamiltonian encodings with the Gray code
论文作者
论文摘要
由于当今的量子硬件的局限性,对于设计最佳利用可用资源的算法尤其重要。当在量子计算机上模拟量子多体系统时,将多体汉密尔顿人转化为Qubit Hamiltonians的直接编码使用了$ n $ qubit System的可用基础状态的$ N $,而$ 2^n $在理论上是可用的。我们探索了使用整个基础状态集的有效编码,其中哈密顿量中的术语用hamiltonian映射到Qubit Operators,该术语以灰色代码顺序为基础。该编码应用于使用模拟变分量子本质量(VQE)找到杜特龙的基态能量的常见问题。它与标准的“一式式”编码进行了比较,并分析了各种权衡。尽管测量的数量增加了,即使在存在模拟硬件噪声的情况下,VQE溶液的能量分布即使在存在模拟的硬件噪声的情况下,即使在存在模拟硬件噪声的情况下,也通过单行编码获得的方差要小。量子数量减少和较短的深度变化ANSATZ可以在电流生成机器上编码更大的问题。该编码还证明了模拟同一系统的时间演变的改进,与一个旋转编码相比,深度降低的进化算子的电路和大约是门数的一半。
Due to the limitations of present-day quantum hardware, it is especially critical to design algorithms that make the best possible use of available resources. When simulating quantum many-body systems on a quantum computer, straightforward encodings that transform many-body Hamiltonians into qubit Hamiltonians use $N$ of the available basis states of an $N$-qubit system, whereas $2^N$ are in theory available. We explore an efficient encoding that uses the entire set of basis states, where terms in the Hamiltonian are mapped to qubit operators with a Hamiltonian that acts on the basis states in Gray code order. This encoding is applied to the commonly-studied problem of finding the ground state energy of a deuteron with a simulated variational quantum eigensolver (VQE). It is compared to a standard "one-hot" encoding, and various trade-offs that arise are analyzed. The energy distribution of VQE solutions has smaller variance than the one obtained by the one-hot encoding even in the presence of simulated hardware noise, despite an increase in the number of measurements. The reduced number of qubits and a shorter-depth variational ansatz enables the encoding of larger problems on current-generation machines. This encoding also demonstrates improvements for simulating time evolution of the same system, producing circuits for the evolution operators with reduced depth and roughly half the number of gates compared to a one-hot encoding.