论文标题
通过凸优化的税收感知投资组合建设
Tax-Aware Portfolio Construction via Convex Optimization
论文作者
论文摘要
我们描述了一种基于优化的税收感知投资组合构建方法,该方法为基于标准的Markowitz的投资组合构建增加了税收责任。我们的方法产生了一个贸易清单,指定每种资产购买的股份数量以及从持有的每个税务货物中出售的股份数量。为了避免WASH销售(其中一些已实现的资本损失被禁止),我们假设我们每月交易,并且不能同时买卖相同的资产。 税收感知的投资组合建设问题不是凸的,但是当我们为每个资产(无论我们购买还是出售)时,它会变成凸。可以使用标准的混合构凸优化方法以某些问题实例的价格为较长的求解时间来解决。我们提供了从风险模型借用曲率的问题的自定义凸放松。这种放松可以很好地近似真正的纳税责任,同时大大提高了计算障碍。此方法需要仅解决两个凸优化问题的解决方案:第一个确定我们是购买还是出售每个资产,第二个则生成了最终的贸易列表。在我们的数值实验中,我们的方法几乎总是将非概念问题解决到最佳性,而当它没有解决,它会产生非常接近最佳的贸易清单。反测试表明,我们方法的性能与使用全球最佳解决方案获得的方法没有区别,但计算工作却大大减少。
We describe an optimization-based tax-aware portfolio construction method that adds tax liability to standard Markowitz-based portfolio construction. Our method produces a trade list that specifies the number of shares to buy of each asset and the number of shares to sell from each tax lot held. To avoid wash sales (in which some realized capital losses are disallowed), we assume that we trade monthly, and cannot simultaneously buy and sell the same asset. The tax-aware portfolio construction problem is not convex, but it becomes convex when we specify, for each asset, whether we buy or sell it. It can be solved using standard mixed-integer convex optimization methods at the cost of very long solve times for some problem instances. We present a custom convex relaxation of the problem that borrows curvature from the risk model. This relaxation can provide a good approximation of the true tax liability, while greatly enhancing computational tractability. This method requires the solution of only two convex optimization problems: the first determines whether we buy or sell each asset, and the second generates the final trade list. In our numerical experiments, our method almost always solves the nonconvex problem to optimality, and when it does not, it produces a trade list very close to optimal. Backtests show that the performance of our method is indistinguishable from that obtained using a globally optimal solution, but with significantly reduced computational effort.