论文标题
人类活动预测的对抗性生成语法
Adversarial Generative Grammars for Human Activity Prediction
论文作者
论文摘要
在本文中,我们提出了一个对抗性生成语法模型,以供将来的预测。目的是学习一个明确捕获时间依赖性的模型,提供了预测多个不同的未来活动的能力。我们的对抗语法的设计,以便它可以从数据分布中学习随机生产规则,并与其潜在的非末端表示。能够在推理期间选择多个生产规则会导致不同的预测结果,从而有效地建模了许多合理的期货。对抗性生成语法在Charades,Multinumos,Human 36M和50个沙拉数据集上进行评估,以及两个活动预测任务:未来的3D人类姿势预测和未来的活动预测。拟议的对抗语法的表现优于最先进的方法,能够比先前的工作更准确和更进一步。
In this paper we propose an adversarial generative grammar model for future prediction. The objective is to learn a model that explicitly captures temporal dependencies, providing a capability to forecast multiple, distinct future activities. Our adversarial grammar is designed so that it can learn stochastic production rules from the data distribution, jointly with its latent non-terminal representations. Being able to select multiple production rules during inference leads to different predicted outcomes, thus efficiently modeling many plausible futures. The adversarial generative grammar is evaluated on the Charades, MultiTHUMOS, Human3.6M, and 50 Salads datasets and on two activity prediction tasks: future 3D human pose prediction and future activity prediction. The proposed adversarial grammar outperforms the state-of-the-art approaches, being able to predict much more accurately and further in the future, than prior work.