论文标题

薄列列聚合物网络的山脊能量

Ridge energy for thin nematic polymer networks

论文作者

Pedrini, Andrea, Virga, Epifanio G.

论文摘要

在平滑等距沉浸液中,将较薄的列表聚合物网络的弹性自由能最小化是主流理论所声称的策略。在本文中,我们扩大了可允许的自发变形类别的类别:我们考虑脊层浸入式浸入式浸入,这可能会导致浸入浸入的表面尖锐的山脊。我们提出了一个模型,以计算沿此类脊的额外能量。这种能量来自弯曲。在什么情况下,它显示出与薄板的厚度四相缩放,落在拉伸和弯曲能量之间。我们通过研究磁盘的自发变形来对其进行测试,该磁盘在交联时刻有径向刺猬。我们预测外部药物在材料中诱导的材料(例如热量和照明)中产生的折叠数量。

Minimizing the elastic free energy of a thin sheet of nematic polymer network among smooth isometric immersions is the strategy purported by the mainstream theory. In this paper, we broaden the class of admissible spontaneous deformations: we consider ridged isometric immersions, which can cause a sharp ridge in the immersed surfaces. We propose a model to compute the extra energy distributed along such ridges. This energy comes from bending; it is shown under what circumstances it scales quadratically with the sheet's thickness, falling just in between stretching and bending energies. We put our theory to the test by studying the spontaneous deformation of a disk on which a radial hedgehog was imprinted at the time of crosslinking. We predict the number of folds that develop in terms of the degree of order induced in the material by external agents (such as heat and illumination).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源