论文标题
Gromov的理论,用于简单的正常横断对,没有对数几何形状
A Gromov-Witten theory for simple normal-crossing pairs without log geometry
论文作者
论文摘要
我们将相对于简单的正常交叉部除差定义了一种新的Gromov-witten理论,它是Gromov-witten多根堆栈理论的限制。证明了几种结构特性,包括相对的量子共同体,辅助形式主义,virasoro约束(零属)和部分共同体田地理论。此外,我们使用相对量子共同体的零部分来提供大细植物的替代镜面构造,并证明弗罗贝尼乌斯结构的构造构造了毛keel的frobseberture。
We define a new Gromov-Witten theory relative to simple normal crossing divisors as a limit of Gromov-Witten theory of multi-root stacks. Several structural properties are proved including relative quantum cohomology, Givental formalism, Virasoro constraints (genus zero) and a partial cohomological field theory. Furthermore, we use the degree zero part of the relative quantum cohomology to provide an alternative mirror construction of Gross-Siebert and to prove the Frobenius structure conjecture of Gross-Hacking-Keel.