论文标题

全息图作为条件期望

The holographic map as a conditional expectation

论文作者

Faulkner, Thomas

论文摘要

我们研究了AD/CFT中的全息图,该图由纠正准确互补恢复的量子误差建模。我们表明,该地图由作用于边界/物理希尔伯特空间的操作员代数的局部条件期望决定。从这个角度来看,文献中的几个现有结果很容易遵循。黑洞地区法律,更通常是Ryu-takayanagi区域操作员,是由相对换向物的中央熵归因于中央。这些熵是根据条件期望以独立的状态确定的。还可以通过最小化程序找到条件期望,类似于RT公式所涉及的最小化。对于与连接边界区域相关的代数的局部网,我们表明互补的恢复条件等同于存在夹杂物的标准网 - 摘要的数学结构是由Longo和Rehren给出的QFT Superselection部门的。对于由边界理论的两个不相交区域相关的代数组成的代码,我们施加了一种额外的条件,称为双重性,这导致了不同纠缠楔之间的相位过渡。双添加代码自然会产生一个新的拆分代码子空间,以及一个子空间和相关代数可重建的熵界限。我们还讨论了作为全息图模型的确切互补恢复的已知缺点。例如,这些代码无法容纳对重叠区域的添加剂的全息侵犯。我们评论近似代码如何解决这些问题。

We study the holographic map in AdS/CFT, as modeled by a quantum error correcting code with exact complementary recovery. We show that the map is determined by local conditional expectations acting on the operator algebras of the boundary/physical Hilbert space. Several existing results in the literature follow easily from this perspective. The Black Hole area law, and more generally the Ryu-Takayanagi area operator, arises from a central sum of entropies on the relative commutant. These entropies are determined in a state independent way by the conditional expectation. The conditional expectation can also be found via a minimization procedure, similar to the minimization involved in the RT formula. For a local net of algebras associated to connected boundary regions, we show the complementary recovery condition is equivalent to the existence of a standard net of inclusions -- an abstraction of the mathematical structure governing QFT superselection sectors given by Longo and Rehren. For a code consisting of algebras associated to two disjoint regions of the boundary theory we impose an extra condition, dubbed dual-additivity, that gives rise to phase transitions between different entanglement wedges. Dual-additive codes naturally give rise to a new split code subspace, and an entropy bound controls which subspace and associated algebra is reconstructable. We also discuss known shortcomings of exact complementary recovery as a model of holography. For example, these codes are not able to accommodate holographic violations of additive for overlapping regions. We comment on how approximate codes can fix these issues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源