论文标题
工程超薄GAAS太阳能电池的相互空间
Engineering the reciprocal space for ultrathin GaAs solar cells
论文作者
论文摘要
III-V太阳能电池主导着高效率图,但成本明显高于其他太阳能电池。 Ultrathin III-V太阳能电池可以表现出较低的生产成本和对由辐射损伤,错位或天然缺陷引起的短载体扩散长度的免疫力。然而,求解亚微米层的不完整的光吸收构成了对轻捕捞结构的挑战。简单的光子晶体具有较高的衍射效率,非常适合窄带应用。随机结构是宽带响应,但衍射效率低。 quasirandom(超一样)结构在于在目标波长范围内提供高衍射效率,比简单的光子晶体宽,但比随机结构窄。在这项工作中,我们提出了一种设计方法,可以通过以受控方式修改空间风格空间来将简单的光子晶体发展为quasirandom结构。我们将这些结构应用于仅100 nm的超薄GAAS太阳能电池。我们预测测试的Quasirandom结构为25.3 mA/cm $^2 $的光电流,而平面结构将限制为16.1 mA/cm $^2 $。 Quasirandom结构中修改的空间较大空间增加了共振量,从离散数量的峰值到吸收中的连续体的发展。由于这种连续性,光电流的增强在角度变化下是稳定的。我们还探索了使用不同的数值种子的Quasirandom结构实际空间分布变化的鲁棒性,并以自组装方法模拟变化。
III-V solar cells dominate the high efficiency charts, but with significantly higher cost than other solar cells. Ultrathin III-V solar cells can exhibit lower production costs and immunity to short carrier diffusion lengths caused by radiation damage, dislocations, or native defects. Nevertheless, solving the incomplete optical absorption of sub-micron layers presents a challenge for light-trapping structures. Simple photonic crystals have high diffractive efficiencies, which are excellent for narrow-band applications. Random structures a broadband response instead but suffer from low diffraction efficiencies. Quasirandom (hyperuniform) structures lie in between providing high diffractive efficiency over a target wavelength range, broader than simple photonic crystals, but narrower than a random structure. In this work, we present a design method to evolve a simple photonic crystal into a quasirandom structure by modifying the spatial-Fourier space in a controlled manner. We apply these structures to an ultrathin GaAs solar cell of only 100 nm. We predict a photocurrent for the tested quasirandom structure of 25.3 mA/cm$^2$, while a planar structure would be limited to 16.1 mA/cm$^2$. The modified spatial-Fourier space in the quasirandom structure increases the amount of resonances, with a progression from discrete number of peaks to a continuum in the absorption. The enhancement in photocurrent is stable under angle variations because of this continuum. We also explore the robustness against changes in the real-space distribution of the quasirandom structures using different numerical seeds, simulating variations in a self-assembly method.