论文标题

3D拓扑模型和Heegaard拆分II:Pontryagin二元性和可观察力

3D Topological Models and Heegaard Splitting II: Pontryagin duality and Observables

论文作者

Thuillier, Frank

论文摘要

在上一篇文章中,在封闭的$ 3 $ -MANIFOLD $ M $上构建了Smooth Deligne-Beilinson共同学组$ h^p_d(m)$,以Heegaard分配为$ x_l \ cup_f x_r $表示。然后,确定了$ u(1)$ chern-simons和bf量子场理论的分区功能的确定。在第二篇和结论的文章中,我们始终以$ m $的heegaard吐痰来定义deligne-beil​​inson $ 1 $ currents,其等效类形成$ h^1_d(m)^\ star $的元素,pontryagin Dual of $ h^1_d(m)$。最后,我们使用单数字段首先恢复$ u(1)$ chern-simons和bf量子字段理论的分区功能,然后确定这些理论定义的链接不变性。还讨论了平滑和奇异场的使用之间的差异。

In a previous article, a construction of the smooth Deligne-Beilinson cohomology groups $H^p_D(M)$ on a closed $3$-manifold $M$ represented by a Heegaard splitting $X_L \cup_f X_R$ was presented. Then, a determination of the partition functions of the $U(1)$ Chern-Simons and BF Quantum Field theories was deduced from this construction. In this second and concluding article we stay in the context of a Heegaard spitting of $M$ to define Deligne-Beilinson $1$-currents whose equivalent classes form the elements of $H^1_D(M)^\star$, the Pontryagin dual of $H^1_D(M)$. Finally, we use singular fields to first recover the partition functions of the $U(1)$ Chern-Simons and BF quantum field theories, and next to determine the link invariants defined by these theories. The difference between the use of smooth and singular fields is also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源