论文标题

密集的随机常规挖掘的最小奇异值

The smallest singular value of dense random regular digraphs

论文作者

Jain, Vishesh, Sah, Ashwin, Sawhney, Mehtaab

论文摘要

令$ a $为$ n $顶点的均匀随机$ d $ regractul digraph的邻接矩阵,并假设$ \ min(d,n-d)\geqλn$。我们表明,对于任何$κ\ geq 0 $,\ [\ mathbb {p} [s_n(a)\leqκ] \ leqc_λκ\ sqrt {n}+2e^{ - c_λn}。条目是i.i.d $ \ text {ber}(d/n)$随机变量。我们结果的特殊情况$κ= 0 $证实了库克关于密集的随机常规挖掘物的奇异性的概率的猜想。

Let $A$ be the adjacency matrix of a uniformly random $d$-regular digraph on $n$ vertices, and suppose that $\min(d,n-d)\geqλn$. We show that for any $κ\geq 0$, \[\mathbb{P}[s_n(A)\leqκ]\leq C_λκ\sqrt{n}+2e^{-c_λn}.\] Up to the constants $C_λ, c_λ> 0$, our bound matches optimal bounds for $n\times n$ random matrices, each of whose entries is an i.i.d $\text{Ber}(d/n)$ random variable. The special case $κ= 0$ of our result confirms a conjecture of Cook regarding the probability of singularity of dense random regular digraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源