论文标题
通过关节优化从数据中学习事件触发的控制
Learning Event-triggered Control from Data through Joint Optimization
论文作者
论文摘要
我们提出了一个用于事件触发的控制策略的无模型学习框架。事件触发的方法旨在实现高控制性能,同时仅在需要时关闭反馈循环。如果通过通信网络发送控制命令(如网络控制系统),则可以节省资源节省,例如,网络带宽。事件触发的控制器由通信策略组成,确定何时交流和控制策略,决定要进行的交流。由于个人优化不一定会产生总体最佳解决方案,因此必须共同优化这两个政策。为了满足这种对联合优化的需求,我们提出了一种基于层次强化学习的新算法。结果算法被证明可以根据资源节省的资源和尺度无缝地对非线性和高维系统来实现高性能控制。通过在六个自由度实时控制的操作器上进行实验,证明了该方法对现实情况的适用性。此外,我们提出了一种评估学习神经网络政策稳定性的方法。
We present a framework for model-free learning of event-triggered control strategies. Event-triggered methods aim to achieve high control performance while only closing the feedback loop when needed. This enables resource savings, e.g., network bandwidth if control commands are sent via communication networks, as in networked control systems. Event-triggered controllers consist of a communication policy, determining when to communicate, and a control policy, deciding what to communicate. It is essential to jointly optimize the two policies since individual optimization does not necessarily yield the overall optimal solution. To address this need for joint optimization, we propose a novel algorithm based on hierarchical reinforcement learning. The resulting algorithm is shown to accomplish high-performance control in line with resource savings and scales seamlessly to nonlinear and high-dimensional systems. The method's applicability to real-world scenarios is demonstrated through experiments on a six degrees of freedom real-time controlled manipulator. Further, we propose an approach towards evaluating the stability of the learned neural network policies.