论文标题

Hurwitz Zeta功能的通用性在绝对收敛的半平面上

Universality of the Hurwitz zeta-function on the half plane of absolute convergence

论文作者

Andersson, Johan

论文摘要

让$ k $成为一个紧凑型套件,在半平面re $ $ $(s)> 0 $上具有连接的补充,让$ f $是$ k $的连续功能,$ k $是内部分析的。我们证明,对于任何参数,对于任何参数$ 0 <α<1,α\ neq \ frac 1 2 $,然后$ f(s)$可以由$ζ(1+it+iT+iδs,α)$ k $均匀地近似,$ t,$ t $ t,gue t,δ> 0 $ t,Δ> 0 $,where $ζ$(s,α)$ζ(s,α)$ DETOTE hursote teote hurwwitzzeta-fun。这是第一个已知的普遍性结果,也已知可以为Hurwitz Zeta功能提供代数非理性参数。

Let $K$ be a compact set with connected complement on the half-plane Re$(s)>0$, and let $f$ be a continuous function on $K$ which is analytic in its interior. We prove that for any parameter $0<α<1, α\neq \frac 1 2$ then $f(s)$ may be uniformly approximated arbitrarily closely by $ζ(1+iT+iδs,α)$ on $K$ for some $T,δ>0$, where $ζ(s,α)$ denote the Hurwitz zeta-function. This is the first known universality result that is also known to hold for the Hurwitz zeta-function with an algebraic irrational parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源