论文标题

从碳到铀的元素的起源

The Origin of Elements from Carbon to Uranium

论文作者

Kobayashi, Chiaki, Karakas, Amanda I., Lugaro, Maria

论文摘要

为了更深入地了解元素周期表中元素的起源,我们为从第一原理(即使用理论核合成的产量和所有化学富集源的事件速率)构建了从C(a = 12)到U(a = 238)的所有稳定元素的银河化学演化(GCE)模型。这使我们能够预测元素的起源,这是时间和环境的函数。在太阳街区,我们发现,如果Hypernovae(HNE)在M〜20-50m_ \ odot中有很大的贡献,则具有M> 30m_ \ odot的恒星可能会变成失败的超新星。除非低质量的超级AGB星星爆炸,否则从超级渐近巨型分支(AGB)恒星(AGB)恒星(AGB)恒星(AGB)对GCE做出的贡献是可以忽略的在中子捕获元件中,通过我们对AGB恒星的缓慢中子捕获过程(S-Process)的更新产量,可以很好地再现第二个(BA)和第三(BA)和第三(PB)峰值的丰度。第一个峰值元素SR,Y和ZR由Ecsne与AGB恒星充分产生。中子星星合并可以产生高达TH和U的快速中子捕获过程(R-Procors)元素,但是时间尺度太长了,无法在低金属率下解释观察结果。如果在25-50 m_ \ odot Hypernovae中约有3%是产生R-Process元素的25-50 m_ \ odot Hypernovae,则观察到的进化趋势(例如欧盟)可以很好地解释。除了太阳能社区外,我们还预测了光环,凸起和厚磁盘的进化趋势,以便将来与银河考古调查进行比较。

To reach a deeper understanding of the origin of elements in the periodic table, we construct Galactic chemical evolution (GCE) models for all stable elements from C (A=12) to U (A=238) from first principles, i.e., using theoretical nucleosynthesis yields and event rates of all chemical enrichment sources. This enables us to predict the origin of elements as a function of time and environment. In the solar neighborhood, we find that stars with initial masses of M>30M_\odot can become failed supernovae if there is a significant contribution from hypernovae (HNe) at M~20-50M_\odot. The contribution to GCE from super asymptotic giant branch (AGB) stars (with M~8-10M_\odot at solar metallicity) is negligible, unless hybrid white dwarfs from low-mass super-AGB stars explode as so-called Type Iax supernovae, or high-mass super-AGB stars explode as electron-capture supernovae (ECSNe). Among neutron-capture elements, the observed abundances of the second (Ba) and third (Pb) peak elements are well reproduced with our updated yields of the slow neutron-capture process (s-process) from AGB stars. The first peak elements, Sr, Y, and Zr, are sufficiently produced by ECSNe together with AGB stars. Neutron star mergers can produce rapid neutron-capture process (r-process) elements up to Th and U, but the timescales are too long to explain observations at low metallicities. The observed evolutionary trends, such as for Eu, can well be explained if ~3% of 25-50 M_\odot hypernovae are magneto-rotational supernovae producing r-process elements. Along with the solar neighborhood, we also predict the evolutionary trends in the halo, bulge, and thick disk for future comparison with galactic archaeology surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源