论文标题
3D铁磁体中电子,旋转和声子之间的晶格动力学和超快的能量流
Lattice dynamics and ultrafast energy flow between electrons, spins, and phonons in a 3d ferromagnet
论文作者
论文摘要
铁磁铁中磁性的超快动力学受电子,磁性和晶格自由度之间的相互作用的控制。为了获得对超快速反应的微观理解,需要有关所有三个子系统响应的信息。但是,仍然缺少对电磁和微观能量流的一致描述。在这里,我们结合了镍对激光激发的超快晶格响应的飞秒电子衍射研究,以及对电子波相互作用和能量持续的原子旋转动力学模拟的从头算的计算。我们的模型与观察到的晶格动力学以及先前报道的电子和磁化动力学一致。我们的方法表明,自旋系统是最初数百个飞秒的主要散热器,这意味着旋转的短暂性非热状态。我们的结果清楚地了解了超快时间尺度上电子,磁性和晶格自由度之间的微观能量流量,并构成了脱氧化理论描述的基础,这与所有三个子系统的动力学一致。
The ultrafast dynamics of magnetic order in a ferromagnet are governed by the interplay between electronic, magnetic and lattice degrees of freedom. In order to obtain a microscopic understanding of ultrafast demagnetization, information on the response of all three subsystems is required. A consistent description of demagnetization and microscopic energy flow, however, is still missing. Here, we combine a femtosecond electron diffraction study of the ultrafast lattice response of nickel to laser excitation with ab initio calculations of the electron-phonon interaction and energy-conserving atomistic spin dynamics simulations. Our model is in agreement with the observed lattice dynamics and previously reported electron and magnetization dynamics. Our approach reveals that the spin system is the dominating heat sink in the initial few hundreds of femtoseconds and implies a transient non-thermal state of the spins. Our results provide a clear picture of the microscopic energy flow between electronic, magnetic and lattice degrees of freedom on ultrafast timescales and constitute a foundation for theoretical descriptions of demagnetization that are consistent with the dynamics of all three subsystems.