论文标题
抗 - $ \ Mathcal {pt} $ - 对称量子:变形和纠缠熵
Anti-$\mathcal{PT}$-symmetric Qubit: Decoherence and Entanglement Entropy
论文作者
论文摘要
我们研究了基于两级旋转系统的抗乳清时间(抗 - $ \ Mathcal {pt} $) - 对称量子,并研究其变质和纠缠熵属性。我们将我们的发现与相应的$ \ Mathcal {pt} $ - 对称和遗传量子尺的发现进行了比较。首先,我们考虑时间依赖的dyson图,以找到一般的非贵宾系统和浴缸的确切分析动力学,然后我们将其专门针对抗 - $ \ $ \ Mathcal {pt} $ - 对称量子。我们发现反对 - $ \ MATHCAL {pt} $ - 对称量子衰减的分流功能比$ \ MATHCAL {pt} $ - 对称和Hermitian Qubits较慢。对于纠缠熵,我们发现与$ \ Mathcal {pt} $ -Symmetric and Symmetric和Hermitian Qubits相比,对于反 - $ \ Mathcal {pt} $ - 对称量子,它生长的速度较慢。同样,我们发现,与$ \ Mathcal {pt} $ - 对称和赫米尔米亚式量子比相比,相应的差异和面积要高得多。这些结果表明,与传统的Hermitian甚至$ \ Mathcal {pt} $ - 对称的Qubits相比,抗$ \ Mathcal {pt} $ - 对称量表可能更适合量子计算和量子信息处理应用程序。
We investigate a two-level spin system based anti-parity-time (anti-$\mathcal{PT}$)-symmetric qubit and study its decoherence as well as entanglement entropy properties. We compare our findings with that of the corresponding $\mathcal{PT}$-symmetric and Hermitian qubits. First we consider the time-dependent Dyson map to find the exact analytical dynamics for a general non-Hermitian qubit system coupled with a bath, then we specialize it to the case of the anti-$\mathcal{PT}$-symmetric qubit. We find that the decoherence function for the anti-$\mathcal{PT}$-symmetric qubit decays slower than the $\mathcal{PT}$-symmetric and Hermitian qubits. For the entanglement entropy we find that for the anti-$\mathcal{PT}$-symmetric qubit it grows more slowly compared to the $\mathcal{PT}$-symmetric and Hermitian qubits. Similarly, we find that the corresponding variance and area of Fisher information is much higher compared to the $\mathcal{PT}$-symmetric and Hermitian qubits. These results demonstrate that anti-$\mathcal{PT}$-symmetric qubits may be better suited for quantum computing and quantum information processing applications than conventional Hermitian or even $\mathcal{PT}$-symmetric qubits.