论文标题
$ gl_2 $的本地分析主要系列表示的分辨率
Resolutions of locally analytic principal series representations of $GL_2$
论文作者
论文摘要
对于有限字段扩展名$ f/\ mathbb {q} _p $,我们将附加的系数系统与$ g的bruhat-tits树相关联:= {\ rm gl} _2(f)$与$ g $ $ g $的本地分析性表示$ v $。这与Schneider和Stuhler的工作类似于平滑表示。该系数系统提供了一个链条复合物,在本地分析主体系列表示$ v $的情况下,它显示为$ v $。
For a finite field extension $F/\mathbb{Q}_p$ we associate a coefficient system attached on the Bruhat-Tits tree of $G:= {\rm GL}_2(F)$ to a locally analytic representation $V$ of $G$. This is done in analogy to the work of Schneider and Stuhler for smooth representations. This coefficient system furnishes a chain-complex which is shown, in the case of locally analytic principal series representations $V$, to be a resolution of $V$.