论文标题
在网络上随机散步的极端第一通道时间
Extreme first passage times for random walks on networks
论文作者
论文摘要
许多生物学,社会和通信系统都可以通过``搜索者''建模。例如,细胞内货物是通过在线社交网络传播的管状网络,新闻和谣言运输的,传染病的全球迅速传播是通过在机场网络上旅行的乘客进行的。为了了解搜索/运输/传播的时间尺度,通常会研究单个搜索者(或``sproader'')的第一个通过时间(fpt)。但是,在许多情况下,相关的时间表不是一个搜索者到目标的fpt,而是最快搜索者对许多搜索者的目标的FPT。例如,第一个分子触发了细胞生物学中的许多过程,以找到许多目标,而传染病才能到达特定城市所需的时间取决于第一个受感染的旅行者才能从许多受感染的旅行者中赶出。这样最快的FPT称为极端FPT。在本文中,我们研究了在网络上连续时间随机步行的一类极端FPT(其中包括连续时间马尔可夫链)。在许多搜索者的限制中,我们找到了概率分布的明确公式以及$ k $第三快的fpt的所有时刻。这些严格的公式仅取决于从开始位置到目标的特定地理路径的网络参数,因为最快的搜索者采用直接通往目标的路线。此外,我们的结果允许人们估计特定系统是否处于以快速极端FPT为特征的政权。我们还证明了网络上的致命搜索者的结果相似,这些搜索者有条件在快速失活时间之前找到目标。我们通过数值模拟并发现涉及极端统计的扩散或延伸过程的潜在陷阱来说明我们的结果。
Many biological, social, and communication systems can be modeled by ``searchers'' moving through a complex network. For example, intracellular cargo is transported on tubular networks, news and rumors spread through online social networks, and the rapid global spread of infectious diseases occurs through passengers traveling on the airport network. To understand the timescale of search/transport/spread, one commonly studies the first passage time (FPT) of a single searcher (or ``spreader'') to a target. However, in many scenarios the relevant timescale is not the FPT of a single searcher to a target, but rather the FPT of the fastest searcher to a target out of many searchers. For example, many processes in cell biology are triggered by the first molecule to find a target out of many, and the time it takes an infectious disease to reach a particular city depends on the first infected traveler to arrive out of potentially many infected travelers. Such fastest FPTs are called extreme FPTs. In this paper, we study extreme FPTs for a general class of continuous-time random walks on networks (which includes continuous-time Markov chains). In the limit of many searchers, we find explicit formulas for the probability distribution and all the moments of the $k$th fastest FPT. These rigorous formulas depend only on network parameters along a certain geodesic path(s) from the starting location to the target since the fastest searchers take a direct route to the target. Furthermore, our results allow one to estimate if a particular system is in a regime characterized by fast extreme FPTs. We also prove similar results for mortal searchers on a network that are conditioned to find the target before a fast inactivation time. We illustrate our results with numerical simulations and uncover potential pitfalls of modeling diffusive or subdiffusive processes involving extreme statistics.